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Introduction:

The objective of this research project is to identify novel therapeutic strategies for breast
cancer treatment by targeting estrogen receptor (ER) function in cancer cells. The estrogen
receptor is a transcription factor whose activity is modulated by the nature of the bound ligand.
The classical pharmacology models postulated that the receptor exists in only two forms, active
and inactive. Accordingly, binding of an agonist switches the receptor from an inactive state to
an active one, and that antagonists work simply by competitively blocking agonist access to the
receptor. The discovery of the selective estrogen receptor modulators (SERMs), which function
as either receptor agonists or antagonists in a tissue selective manner, challenged the classical
model and highlighted the complexity of ER action. A more complex model which takes into
account the differential interaction of ER-ligand complexes with cellular cofactor proteins has
emerged. It has become clear in recent years that protein-protein interactions govern many
biological processes, including transcriptional activation by ER, and that ligand induced
structural alterations in ER can influence its interaction with cofactor proteins. We proposed to
identify small peptides with which to detect the conformations of various ER-ligand complexes.
We expect that these peptides will be useful for the analysis of the complex ER pharmacology.
Additionally, we believe that peptides which detect important protein-protein interaction surfaces
on ER will be discovered which will highlight new targets for drug development in breast cancer.
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Body:

In the previous two granting periods we applied a combinatorial peptide screening
approach and identified peptides that detect ligand-induced structural alterations within the
estrogen receptor (ER), some of which recognize protein-protein interaction surfaces within the
receptor (1, 2). Specifically, several peptides interact with the p160 coactivator binding pocket
within ER, and when overexpressed in cells these peptides blocked the association of ER with
coactivators, leading to disruption of ER-mediated transcription activation. We have also
demonstrated that the mechanisms by which tamoxifen and estradiol manifest agonist activity are
not the same. We found that the ER-tamoxifen and ER-estradiol complexes may recruit distinct
coactivator proteins, suggesting ER activity can be differentially regulated by targeting different
receptor:cofactor interactions. Additionally, high affinity ERP3-specific peptides were identified
which, when introduced into cells, specifically disrupt the activity of ERI3, but not the activity of
the closely related ERcc protein (3). This finding was significant since there is no known ER-
subtype specific ligands available to dissect the contributions of these two receptor subtypes in
estrogen meidiated biological activities. Several novel ER-interacting cofactor proteins were
identified in a yeast two-hybrid screen that may facilitate the elucidation of ER pharmacology,
and can be used to validate receptor:cofactor interaction surfaces as targets for therapeutic
intervention.

The major task in this last granting period is to validate whether targeting the protein-
protein interaction surfaces on ER can be used to develop novel therapeutics for tamoxifen-
resistant tumors.

(1) Endogenous and transfected ER respond differently to AF-2 targeting peptides

We demonstrated previously that in cells transfected with exogenous ER, co-expression of
ER activation function-2 (AF-2) binding peptides efficiently inhibits ER transcriptional activity
(2). These peptides contain the signature LxxLL motif (L: leucine, x: any amino acids), a motif
found in all p160 coactivators and required for these coactivators to interact with the AF-2 of
most nuclear receptors, including ER. We needed to verify whether this class of peptides can
also inhibit endogenous ER function before developing these peptides as therapeutics. To test
this, we transfected human breast cancer MCF-7 cells with an estrogen-responsive reporter gene
and increasing amounts of plasmids expressing the aforementioned peptides. To our surprise we
found that although the 2xF6 and GRIP peptides efficiently inhibited ERca transcriptional
activity in HeLa cells expressing exogenous ERax (Figure 1A), these same peptides have minimal
effect on endogenous ER activity when tested in MCF-7 cells (Figure 1B). This finding was
rather confusing, since we have previously used several approaches, including mammalian two-
hybrid analysis, GST-pull down assay, and fluorescence co-localization, and have demonstrated
that these LxxLL containing peptides interact with ER in vitro and in cells. Based on these
findings, we concluded, therefore, that the inhibitory effect of these peptides on ER
transcriptional activity is likely due to their ability to compete with p160 coactivator proteins for
binding to the AF-2 pocket. Since we failed to show an inhibition of these peptides on
endogenous ER activity, we wanted to re-confirm that these peptides indeed interact with ER
with a more direct measurement of their interaction inside of cells. We utilized the fluorescence
polarization assay to address this question. We fused the ERaX with the red fluorescence protein
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(RFP) and the peptides with the cyan fluorescence protein (CFP). The fluorescence energy
transfer can only occur when the RFP and GFP are brought to close proximity. Using this
analysis, we confirmed that the exogenously transfected ER indeed interacts with LxxLL
peptides in living cells (Figure 2 and (4)). This assay, however, will not be able to address
whether the LxxLL peptides interact with endogenous ER. The result of this work and other
findings using the fluorescence resonance energy transfer (FRET) assay is published in
Molecular Endocrinology 16 (3): 487-496, 2002.

To rule out the possibility that transfection may not be able to deliver sufficient amounts
of peptides into cells to disrupt endogenous ER:cofactor interactions, Dr. Ganesan in this lab has
generated an adenovirus expressing the Gal4DBD-2xF6 peptide fusion protein. When she
infected MCF-7 cells with these viruses, she found again that the 2xF6 peptide was able to
inhibit the activity of the exogenously transfected ERcL, but not the activity of the endogenous
ERc. Not all the receptors we tested show such discrepancy between the endogenous and
transfected proteins. Dr. Kimbrel in this lab had identified a peptide, Lx 23, which interacts with
the AF-2 of the progesterone and glucocorticoid receptors (PR and GR). She was able to show
that the Lx23 peptide can efficiently inhibit both PR and GR activities in cells expressing these
endogenous receptors (5). Therefore, we believe it is possible to develop novel therapeutics by
targeting the AF-2 pocket of nuclear receptors (such as PR and GR); however, the pharmacology
of ER appears to be more complex than we originally anticipated.

The fact that the peptide could not inhibit endogenous ER activity in MCF-7 cells is quite
intriguing. We first considered that the affinity of these peptides may not be high enough to
disrupt endogenous receptor:cofactor interactions. This is unlikely since the peptide efficiently
disrupts the interaction between cofactors and the exogenously expressed ER which has the same
protein sequence as the transfected receptor. Additionally, the affinity of the one copy F6
peptide is approximately 100 nM (6), similar to the affinity of SRC1 LxxLL motif for ER. We
expected that the affinity of the two-copy peptide 2xF6 should be much higher than the single
copy one (as shown in the previous report and (2)). We concluded, therefore, that affinity alone
can not explain why these peptides do not inhibit endogenous ER activity.

We next thought it is possible that the endogenously expressed receptor may be modified
in a way that distinguishes it from the transfected ER, so that its transcriptional activity does not
require the recruitment of p160 coactivators through the AF-2 region. However, it has been
demonstrated by chromotin immunoprecipitation (CHIP) analysis that the endogenous ER
expressed in MCF-7 cells indeed recruits the p160 coactivators such as SRC-1, GRIP1, and AIB-
1 to the target gene promoter in an estradiol-dependent manner. Therefore, introduction of the
LxxLL containing peptides in cells should affect ER activity, unless the recruitment of p160s to
endogenous ER does not require the AF-2, or that the p160 associated ER on the target gene
promoters accounts for only a small fraction of the total pool of transcriptionally active ER.
Since ERc has two activation function domains, AF-1 and AF-2, we also consider it possible
that the AF-1 may be the predominate activation function utilized by endogenous ER to recruit
coactivators in MCF-7 cells, and that the transfected ER may have overwhelmed the endogenous
system. Instead of engaging the AF-1 coactivators, therefore, it utilizes the more abundant pi60s
to manifest activity. If that's the case it would explain why only the exogenously-transfected ER
is subjected to the inhibition by AF-2 binding peptides. This is supported by the observation that
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in HepG2 cells, which allows ER to manifest more AF-1 activity, the LxxLL-containing peptides
were not as efficient an antagonist as they were in the AF-2 dominant HeLa cells (2).
Additionally, we also found that the activity of the androgen receptor (AR), which is considered
to have minimum contribution from the AF-2, is minimally affected by the expression of AF-2
binding peptides (see below).

There is, however, additional evidence suggesting that the transcription and translation of
proteins inside cells may be coordinated by RNA-binding proteins (7). It has been proposed that
RNA binding proteins may coordinate the localization of transcripts that encode proteins which
may function in the same pathways much like the operon in prokaryotic cells. It is possible that
the transcripts of endogenous ER and cofactor proteins may be clustered together and associated
with one another when translated; therefore, exogenously-expressed peptides do not have a
change to interact with endogenous ER. As a first step to distinguish between these mechanisms,
we are currently working with the CHIP assay to determine whether the expressed peptides are
associated with endogenous ER on the target gene promoter. If the expressed peptides are
indeed associated with ER on the target gene, it would suggest that the AF-2 may not be required
for endogenous ER activity. If the peptides do not associate with ER on the target gene, it would
suggest that the intracellular organization of proteins or perhaps other mechanisms may have
precluded these peptides from interacting with the endogenous ER.

(2) The activity of the androgen receptor is regulated in a manner distinct from other
nuclear receptors

The androgen receptor (AR), another structurally related steroid hormone receptor, is
widely expressed in breast cancer cells, however the role of AR in breast cancer is still
controversial. Some studies suggest that the transcriptionally active AR may play a protective
role in the progression of breast cancer, while others have observed a correlation of AR
expression with the invasiveness of breast tumors. Studies have shown that
medroxyprogesterone acetate (MPA), a progestin which is frequently used as second line
hormonal therapy for the treatment of metastatic breast cancer, may manifest its activity through
binding and activating AR in breast tumors. Therefore, in addition to ER and PR, AR may also
be a target for therapeutic intervention in breast cancer. We feel that the study of AR
pharmacology will help the analysis of the roles of these steroid hormone receptors in the
progression of this disease.

In the previous report, we described the discovery of two peptides that bind not only to
estradiol-activated ER but also to the agonist activated AR (and PR). These two peptides, D30
and D11, contain the signature LxxLL motif and bind to the AF-2 of AR in a strictly agonist-
dependent manner. Although the AF-2 of most nuclear receptors by itself can recruit
coactivators required for transcriptional activity, the AF-2 of AR appears to have minimal
transcriptional activity on its own. This could be due to the unique conformation of the AR AF-
2. We found that although AR shares a high degree of homology with other steroid hormone
receptors, it was not able to interact with the LxxLL motifs that most nuclear receptors interacted
with, including the p160 coactivators SRC-1 and GRIP-1 (Figure 3). In fact it appears that the
dominant activation function in AR is the AF-1, because the AF-1 alone is just as active as the
agonist activated full length AR. Because our peptides bind to the AF-2 of AR and their binding
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appears to correlate well with the transcriptional activity of the receptor, we utilized these
peptides to determine the role of AF-2 in AR mediated transcription. When over-expressed in
cells, both the single copy and the two-copy D30 peptide have only minimal effects on AR
transcriptional activity, while under the same conditions these peptides completely abolished PR
activity. We concluded from this result that the AF-2 of AR is likely not involved in the
recruitment of coactivators.

It has been demonstrated previously that the amino- and carboxyl-termini of AR can
interact with each other (8-10). He et al has recently discovered a FXXLF motif (F:
phenylalanine, X: any amino acids, L: leucine) located in the amino terminus of AR, which
appears to mediate the interaction between the amino- and carboxyl-termini of AR (11). Since
the FxxLF motif bears similarity with the LxxLL motif, we wanted to determine if the LxxLL
motif we discovered functiond similarly to the FxxLF motif. It was proposed that the purpose of
the AR N-/C- interaction is to lock the ligand in its ligand binding pocket, as the ligand binding
domain (LBD) of the AR when expressed alone has a high ligand off-rate (12). However, when
the AR LBD was co-expressed with the amino terminus of AR, the ligand off-rate could be
partially restored. We found that co-expression of our D30 peptide could achieve the same effect
as the amino terminus of AR (Figure 5). We thus believe that when bound by an agonist, the
AF-2 of AR must undergo a conformational change, a change which is recognized by our D30
peptide as well as the amino terminus of the receptor. Interaction between the amino- and the
carboxyl-termini of AR in turn stabilizes the ligand binding within the ligand binding pocket,
allowing AR to efficiently activate transcription.

In addition to mimicking the AR amino terminus FxxLF motif, we believe the D30
peptides may also recognize a conformation on the AF-2 of AR which was not revealed by the
N-/C- interaction analysis. Specifically, we observed that the conformational changes induced
by RU486, a weak agonist of AR, could be detected in a mammalian two-hybrid assay using the
D30 peptide and the full length AR (Figure 6B). This interaction correlated with the weak
partial agonist activity of RU 486 on AR-mediated reporter gene expression (Figure 6A). The N-
/C- interaction, although able to predict the agonist activity of many AR ligands, failed to detect
the partial agonist activity of RU486 (Figure 6C). Furthermore, while RU486 was not able to
support the N-/C-interaction, it efficiently induced the expression of an androgen responsive
MMTV-Luc reporter gene by activating an AR construct containing a VP16 acidic
transactivation domain fused to its amino terminus (Figure 6D). Fusion of VP16 to AR
circumvents the need to recruit AR-specific coactivators required for its activity, thus serving as
an indicator of the ability of a ligand to promote the association between the receptor and
specific DNA elements. Since RU486-bound VP16-AR was able to form a complex with DNA
that is stable enough to recruit VP16 associated cofactor proteins to the target gene, we believe
that the weak agonist activity of RU486-bound AR is likely due to the inability of this receptor-
ligand complex to recruit AR-specific cofactors. How the AF-2 conformation, which does not
seem to be involved in coactivator docking, regulates the recruitment of cofactors by AR remains
to be determined. It is possible that the conformational changes in the AR AF-2 may transduce a
structural alteration in the AF-1, permitting its interaction with coactivators. Alternatively, the
conformation of the AF-2, if not presented correctly, may pose a stereo hindrance to the AF-1
and passively prevents AF-1 from interacting with coactivators. The results of this study are
published in Molecular Endocrinology 16 (4): 647-660, 2002. On a similar note, we and others
have characterized various ER antagonists, all of which bind to the AF-2 of ER. Some of them
inhibit both AF-1 and tAF-2 activity, while compounds like tamoxifen inhibit the AF-2 but spare
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the AF-1 activity. The mechanisms by which different AF-2 ligands may be able to affect the
activity of AF-1 is interesting, and the understanding of these mechanisms may facilitate the
development of more effective therapeutics.
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Key Research Accomplishments:

July 1999 - June 2000:

1. Identified conformational-sensitive probes for ER.

2. Developed a cell-based assay system to probe ER conformations.

3. Identified different classes of LxxLL, coactivator:receptor interacting motifs.

4. Demonstrated that tamoxifen- and estradiol-induced transcriptional activities are

mediated through different mechanisms.

5. Identified peptide antagonists for estradiol-induced ER transcriptional activity.

6. Identified peptide antagonists that can distinguish between ERux and ER3.

7. Identified peptide antagonists which block tamoxifen partial agonist activity within intact

cells.

July 2000 - June 2001:

1. Identified peptides that bind ERP3 with high specificity and affinity using the LxxLL

focused library.

2. Validated the ERP3-specific peptides as potent inhibitors of ERP3 activity.

3. Confirmed the interactions of peptides identified in our screen with ER in living cells and

discovered that different coactivator peptides interact with ER with different kinetics.

4. Identified proteins that interact with ERc in a manner distinct from p160 coactivators.

5. Identified one mechanism by which hormone resistance occurs in prostate cancer cells.
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July 2001 - June 2002:

1. Confirmed that the peptides identified in our previous screens interact directly with ER in

cells using FRET assay.

2. Discovered that endogenous and transfected ER may manifest their activities in different

manners.

3. Identified that the structure of AR AF-2 is distinct from other steroid hormone receptors

using short peptides identified in our phage display screen.

4. Analyzed the mechanisms by which the androgen receptor manifests transcriptional

activity.
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Reportable Outcomes:

Manuscripts:

1. Chang, C.-Y.. Walther, P., and McDonnell, D.P. Glucocorticoids manifest androgenic
activity in a cell line derived from a metastatic prostate cancer. Cancer Research, 61: 8712-
8717, 2001.

2. Weatherman R.V., Chang, C.-Y., Clegg, N.J., Caroll, D.C., Day, R.N., Baxter, J.D.,
McDonnell, D.P., Scanlan, T.S., Schaufele, F. Ligand-selective interactions of estrogen
receptor detected in living cells by fluorescence resonance energy transfer. Molecular
Endocrinology 16 (3): 487-496, 2002.

3. Chang, C.-Y. and McDonnell, D.P. Evaluation of ligand-dependent changes in androgen
receptor structure by peptide probes. Molecular Endocrinology 16 (4): 647-660, 2002.

4. Pathrose P., Barmina, 0. Y., Chang, C.-Y., McDonnell, D. P., Shevde, N. K., and Pike, J.
W. Inhibition of 1,25-dihydroxyvitamin D3-dependent transcription by synthetic LxxLL

peptide antagonists that target the activation domains of the vitamin D and retinoid X
receptors. Journal of Mineral and Bone Research. In press (2002).

Meeting Abstracts:

1. Keystone Symposia-Nuclear receptors 2002, Snowbird, Utah. April, 2002.

Chang, C.-Y. and McDonnell, D.P. Evaluation of ligand-dependent changes in androgen
receptor structure using peptide probes

Funding Received:

1. Howard Temin Award (CA95094) from National Cancer Institute to Ching-yi Chang (PI)
and Donald McDonnell (Mentor)
The androgen receptor:cofactor interface-a target for new drugs.
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Conclusions:

Anti-estrogens play an important role in the treatment of breast cancers. Because
estrogen receptor is required for the maintenance of several normal physiological functions, the
ideal drug of choice should have anti-estrogenic activity in the breast but at the same time
preserve the beneficial effects of estrogen in other tissues. We have developed conformational
probes of ER and demonstrated that various protein-protein interaction surfaces on ER are
exposed upon binding different ligands. We also showed that ER activities can be differentially
targeted by selectively blocking specific receptor:cofactor interactions using these
conformational peptide probes in transient transfection assays. The further development of these
peptides into therapeutics for breast cancer is hindered by the observation that the endogenous
ER and exogenously transfected ER behave differently in cells. The means by which this occurs
is not clear, and we are currently investigating several potential mechanisms. Although
developing peptide antagonists for ER cannot proceed until we resolve this problem, peptides
that antagonize both exogenous and endogenous PR and GR activities have been developed by
colleagues in this lab. We believe that the same approach will likely be successful for the
development of novel ER antagonists as we resolve the discrepancy between endogenous and
exogenous ER. Since the majority of primary human breast cancers express AR, it has been
suggested that AR may also play a role in the disease progression, making it a potential target for
therapeutic intervention. We used peptides identified in our initial phage display screen to
dissect the mechanisms underlying AR pharmacology. We found that although AR shares high
sequence homology with other steroid hormone receptors, the conformation of the AF-2 of this
receptor is quite different, which prohibits its interaction with common coactivators. Therefore,
the majority of the transcriptional activity of this receptor is manifest through recruitment of AF-
1 interacting cofactors. These findings have furthered our understanding of AR pharmacology
and will enable the identification of novel targeting strategies to modulate AR activities.
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Figure 1
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Figure 1. The LXXLL containing peptides efficiently inhibited the activity of a
transfected ER, but not the activity of ER expressed endogenously. (A) HeLa cells
were transfected with an ERcL expression vector, RST7-ERcx along with the 3xEREtata-
Luc reporter gene and increasing amounts of the Gal4-DBD peptide fusion constructs
(either the 2xF6 or GRIP-1 NR box) as indicated. (B) MCF-7 cells which express
endogenous ERcx were transfected as in (A) but without the ERca expression vector,
RST7-ERox. Sixteen hours after transfection, cells were treated with 100 nM 173-
estradiol for an additional 16 h before assaying. Fold induction represents the ratio of
estradiol-induced activity versus no-hormone control for each transfection.
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Figure 2. Estrogen-specific interaction of CFP-LXXLL and ERa-RFP in
living cells. GHFT1-5 cells were transfected with the ERux-RFP and CFP-
LXXLL peptide expression vectors. Transfected cells were grown for 24 h in
estrogen-free media. A total of 1 uM of each ligand was added and the cells
grown for a further 24 h before data collection. Quantitative fluorescence
images were collected with a Hamamatsu ORCA cooled interline camera
attached to an Olympus Corp. IX-70 microscope.
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Figure 3. The ligand-binding domain of AR has a preference for LXXLL-
peptide binding that is distinct from other nuclear receptors. Different LxxLL-
motif containing peptides were fused to the Gal4-DBD, and the full length AR was
modified to include a VP16-activation domain at its amino terminus. Interactions
between peptides and AR were determined by measuring the expression of a reporter
gene containing five copies of the Gal4-response elements. CV-1 cells were
transfected with different peptide-Gal4DBD constructs together with either the VP16-
AR expression plasmid, and reporter constructs 5xGal4Luc3 and pCMV-P3gal. After
transfection, cells were treated with either vehicle control (NH), 100 nM 5ct-
dihydrotestosterone (DHT), 100 nM hydroxyflutamide (OH-F) or 1 LM bicalutamide
for 16 h. Luciferase activity was measured and normalized to the activity of the co-
expressed 13-galactosidase.
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Figure 4. The D30 binding surface on AR does not overlap with that required for
coactivator binding. CV-1 cells were transfected with MIMTV-Luc, pCMV3gal, and
either RS-AR or pKBC-PRB in the presence of either pM, pM-D30 or pM-2xD30 as
indicated. After transfection, cells were treated with either vehicle control, the AR
agonist R1881 (100 nM) or the PR agonist R5020 (100 nM) for 16 h. Luciferase
activity was measured and normalized to the activity of the co-expressed f3-
galactosidase.
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Figure 5. The D30 peptide functions similarly to the amino terminus of AR in
stabilizing ligand binding in the AR-LBD. CV-1 cells were transfected with
expression plasmids for either (a) wild-type AR alone, (b) AR507-919 plus ARI-501,
(c) AR507-919 plus Gal4DBD (pM) or (d) AR507-919 plus Gal4DBD-2xD30 (pM-
2xD30). 24 h after transfection, cells were labeled with 5 nM of 3H-R1881 for 2 h and
then a 10,000-fold excess of cold R1881 was added at different time points. Cells
were washed 4 times with PBS to remove non-specific binding and then lysed for
scintillation counting and protein concentration measurement.
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Figure 6. The formation of a D30-binding pocket on AR is required for its transcriptional
activity. (A) A reporter gene assay was used to analyze the agonist or antagonist activity of AR
ligands. CV-1 cells were transfected with the AR expression plasmid, RS-ARwt together with
MiMTV-Luc and pCMV-O3gal. (B) A mammalian two-hybrid assay was performed to determine
the ability of ligand-AR complexes to recruit the D30 peptide. CV-1 cells were transfected with
5xGal4Luc3, pCMV-3gal and pM-30, together with VP16-ARwt. (C) The ability of ligand-
AR/LBD complexes to recruit the amino terminus of AR was analyzed. CV-1 cells were
transfected with MMTV-Luc, pCMV-P3gal and pcDNA-AR1-501, together with pcDNA-
AR507-919wt. (D) The ARwt was expressed as fusion proteins to the VP16-acidic activation
domain to bypass the need for AR-specific coactivators required for gene transcription, allowing
the assessment of the ability of ligands to deliver receptor to DNA. CV-1 cells were transfected
with pVP16-ARwt together with MMTV-Luc and pCMV-P3gal. After transfection, cells were
treated with either vehicle alone, 100 nM DHT, 100 nM OHF or 100 nM RU486 as indicated for
16 h before the luciferase and P3-galactosidase activities were determined.



A

Meeting Abstract

Evaluation of Ligand-dependent changes in androgen receptor structure using peptide
probes
Ching-yi Chang and Donald P. McDonnell
Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham,
North Carolina, United States, 27710

Mutations in the androgen receptor (AR) are frequently found in relapsed prostate cancers,
permitting anti-androgens, estrogens, progestins and even glucocorticoids to function as
androgens. However, the mechanism by which these mutations enable this shift in AR-
pharmacology is still unknown. Resistance to anti-hormone therapy arises also in estrogen
receptor (ER)-positive breast cancers, where it is believed that alterations in cofactor expression
in the cells permit anti-estrogens like tamoxifen to function as agonists. In support of this
hypothesis we have shown that tamoxifen binding to ER allows the presentation of novel
protein-protein interaction surfaces on the receptor, enabling it to interact in an ectopic manner
with transcriptional coactivators. In this study we wanted to see if the same mechanisms would
also apply with respect to anti-androgen resistance. To explore this possibility, we used phage
display to identify a series of LXXLL-containing peptides that interact with the AF2 domain of
AR. We found that although the binding of peptides to wild-type AR was strictly agonist
dependent, these same peptides could also interact with a number of gain of function AR variants
containing mutations frequently found in relapsed prostate cancers, in the presence of androgens
and non-androgenic activating compounds. This suggests that the agonist activity of these
ligands occurs because they, in the background of these mutations, allow AR-AF2 to adopt an
active conformation. Initially, this result seems to contradict other findings which suggest that
coactivator binding to AR-AF2 is not required for AR activity. In probing this further, we have
determined that the role of AR-AF2 appears to be to stabilize the overall structure of the
receptor, allowing the amino terminus to interact with appropriate coactivators. This contention
is supported by the finding that over-expression of the AF2-binding peptides does indeed block
the interaction of the amino- and carboxyl- terminal of AR, but does not attenuate AR
transcriptional activity. Thus we believe that mutations in AR which facilitate the formation of
an AF2 pocket, have the potential to allow AR antagonists to manifest agonist activity.
Supported by an NIH grant CA-90645 to D.P.M. and a postdoctoral fellowship (DAMD17-99-1-
9173) from USAMRAA to C.-Y.C.
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Glucocorticoids Manifest Androgenic Activity in a Cell Line Derived from a

Metastatic Prostate Cancer1

Ching-Yi Chang, Philip J. Walther, and Donald P. McDonnell 2

Department of Pharmacology and Cancer Biology [C-Y. C., D. P. M.] and Department of Surgery/Urology [P. J. W.], Duke University Medical Center, Durham, North Carolina
27710

ABSTRACT modest therapeutic advantage, later studies have been unable to con-
firm these observations (7).

The pathophysiological mechanism(s) by which androgen independence Nevertheless, even while TAA can be very effective initially in

develops in prostate cancer remains to be determined. The identification

in many prostate cancer specimens of a mutant androgen receptor, patients with advanced disease, an androgen-independent state usually

T877A, with altered ligand specificity has provided an explanation for develops within 1-2 years (4, 5), and survival becomes limited be-

some treatment failures. The T877A mutant androgen receptor recognizes yond that point. The cellular mechanisms leading to the development

a number of nonandrogenic compounds, including certain estrogens, pro- of androgen-independent tumors are not clear and may involve both
gestins, and even antiandrogens as androgens. However, a comprehensive AR-dependent and AR-independent pathways. Of particular interest
screen for hormonal agents which display agonist activity on this mutant is, however, a syndrome, initially termed the flutamide withdrawal
has not been performed. In this study, we characterized this clinically syndrome, which was recognized a decade ago. In -20-50% of
important receptor mutant further and found that it can be activated by patients who have failed TAA, a paradoxical drop in serum PSA
a wide range of compounds, including a number of endogenous glucocor- levels (the marker most commonly used to monitor prostate cancer
ticoids. Among the most clinically relevant compounds identified are DOC
and corticosterone, both of which can effectively activate the mutant progression) or even improved symptom status was observed after
receptor at concentrations normally found in blood. Dexamethasone, a cessation of flutamide (8). The duration of this withdrawal response is

synthetic glucocorticoid frequently used in various contexts for prostate variable, typically lasting -3-6 months. At this point, tumors pro-
cancer therapy, is also recognized as an androgen by the mutant receptor. gress despite castrate levels of androgens.
These unexpected findings suggest the need to: (a) reassess the role of Different mechanisms have been proposed to explain the develop-
adrenally derived glucocorticoids in prostate cancer disease progression; ment of androgen-independent prostate cancers (reviewed in Ref. 7).
and (b) recognize the potential for iatrogenic stimulation of disease pro- Among the best described resistance mechanisms, amplification of
gression with certain glucocorticoid interventions. AR, which could enhance the impact of residual androgens present in

circulation, has been observed in 30% of prostate cancer specimens

INTRODUCTION from patients who have failed AA (9-11). In addition, somatic mu-
tations have been found within AR which alter its pharmacology

The most recent estimates published by the American Cancer (12-14). In particular, the T877A mutation (threonine to alanine

Society predict 180,000 new cases of prostate cancer annually in the substitution at amino acid 877), which resides within the ligand-

United States and that close to 32,000 men will die of this disease each binding domain of AR, has been frequently identified in specimens of
year (1). Such statistics place this disease second only to lung cancer hormone refractory metastatic prostate cancer. As a result, an apparent
as the leading cause of mortality in United States males. Although "promiscuous" stimulation of AR-mediated transcriptional activation
several therapeutic options (radical surgery, external radiotherapy, by estrogens, progestins, and even synthetic antiandrogens such as
interstitial brachytherapy) are available for early stage, organ- flutamide has been observed in both the prostate cancer cell line
confined tumors, AA 3 remains the primary, most effective mainstay LNCaP, as well as specimens harboring this mutation (15, 16). It is
therapy for advanced disease (2-4). Numerous clinical trials over the this mutation that is often ascribed as the underlying cause of the

past 60 years have demonstrated that suppression of gonadal androgen flutamide withdrawal syndrome (17), because its incidence is high in
production by surgical castration or medical intervention (estrogens, flutamide-treated patients and low, though clearly present, in patients
GnRH agonists/antagonists) can effectively induce cancer regression who have undergone other treatments (13, 17, 18). Adding to the
for substantial periods of time (reviewed in Refs. 5 and 6). However, puzzle, however, is that a significant number of patients whose tumors
progression eventually occurs in most patients treated in this manner. were subsequently shown to have an 877 AR mutation did not show

To circumvent this problem, a regimen termed TAA, which combines a clinical flutaide withdrawal response despite discontinuation of
the use of either castration or GnRH agonists with an antiandrogen the drug (13). Interestingly, Zhao et al. (19) has recently shown that

such as flutamide, has also been implemented. The effectiveness of the mutations found in MDA PCa 2b cells, a cell line derived from the
TAA for the treatment of prostate cancer, however, remains contro- bone metastasis of an androgen-independent prostate cancer, harbor a

versial. Although some well-designed Phase III trials have shown a double mutation L701H and T877A, which allows the mutant receptor
to be activated by cortisol and cortisone; thus, these cells no longer

Received 7/5/01; accepted 10/15/01. require androgens for growth.
The costs of publication of this article were defrayed in part by the payment of page Taken together: (a) the observation of the flutamide withdrawal

charges. This article must therefore be hereby marked advertisement in accordance with
18 U.S.C. Section 1734 solely to indicate this fact. syndrome; (b) the identification of mutants of the AR that affect

' Supported by NIH Grant DK-50494 (to D. P. M.) and a postdoctoral fellowship ligand specificity; and (c) the ability of patients failing AA mono-
(DAMD17-99-1-9173) from DOD (to C-Y. C.).

' To whom requests for reprints should be addressed, at the Department of Pharma- therapy alone (e.g., castration only) to exhibit frequent modest sero-
cology and Cancer Biology, Duke University Medical Center, Box 3813, Durham, NC logical responses to delayed utilization of AR-directed antiandrogens
27710. Phone: (919) 684-6035; Fax: (919) 681-7139; E-mail: donald.mcdonnell@ suggest that at this point, such cancers are not strictly androgen
duke.edu.

' The abbreviations used are: AA, androgen ablation; TAA, total androgen ablation; independent. Indeed, the identification of receptor mutants permitting
AR, androgen receptor; DPA, diphenylamine; PSA, prostate-specific antigen; RT-PCR, altered hormonal specificity suggests that prostate cancer cell growth
reverse transcription-PCR; DHT, dihydrotestosterone; DOC, l l-deoxycorticosterone;
Dex, dexamethasone; GR, glucocorticoid receptor; GnRH, gonadotropin-releasing might be stimulated by other endogenous-circulating hormones at
hormone; OH-F, hydroxyflutamide. certain stages of cancer progression as a result of this somatic muta-
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tion. The latter hypothesis is supported by the fact that most flut- RT-PCR. Monolayer LNCaP cells were maintained in phenol red-free

amide-refractory cancers respond well to bicalutamide, an antiandro- RPMI plus 8% charcoal-stripped serum for 3 days and then induced with

gen binding in the ligand-binding domain but with a somewhat different concentrations of DHT, DOC, or Dex for 24 h. Total RNA was

different mechanism of action than flutamide (20, 21). Thus, even in collected using Ultraspec RNA isolation system (Biotecx, Houston, TX),

flutamide-refractory cancers, it appears as if AR is still somewhat and RT-PCR was carried out with Qiagen One-Step RT-PCR kit (Qiagen,
Valencia, CA). Primer sets used in RT-PCR were: 0-actin-5': 5'-TGTGAT-

involved in prostate cell growth. GGTGGGAATGGGTCAG-3', 03-actin-3': 5'-'TIGATGTCACGCACGAT-

To investigate whether endogenous hormones other than andro- TTC-3', PSA-617: 5'-CCTCCTGAAGAATCGATTCC-3', and PSA-814: 5'-

gens, estrogens, and progestins might contribute to the clinical phe- GAGGTCCACACACTGAAGTT-3' (25).

nomenon of treatment escape after the emergence of a mutated AR,

we decided to test a wide variety of endogenous steroid hormones, as RESULTS

well as synthetic steroids to see if any of these compounds have the

ability to activate the AR T877A mutant. It was anticipated that a Earlier studies have identified progesterone, estradiol, and certain

screen of this nature may lead to the identification of compounds that weak adrenal androgens as potent activators of the AR T877A mutant.

have the potential to function as AR agonists in certain circumstances. In this study, we tested a broader spectrum of compounds for their

In addition, it may also provide an explanation for the observation that ability to activate either the wild-type or the T877A mutant AR in

AR-dependent growth of some prostate cancers can occur in the transient transfection assays in CV-1 cells using the MMTV-Luc

absence of detectable androgens. reporter gene. Compounds tested include several adrenal androgens,
their precursors and metabolites, and various clinically relevant glu-

cocorticoids. In a pilot screen, we found that many compounds, at a

MATERIALS AND METHODS concentration of 1 JLM, could activate the reporter gene in cells

transfected with the mutant AR (Fig. 1A) while exhibiting little or no

Reagents and Plasmids. All of the chemicals used in this study were activity in cells transfected with the wild-type AR or with a control

obtained from Sigma Chemical Co. (St. Louis, MO), except for the bicalut- plasmid (data not shown). It was surprising to us that the mutant AR
amide, which was a generous gift from Nobex Corp. (Research Triangle Park, could be activated by such a structurally diverse group of ligands. This

NC). The RS-AR and VPI6-AR were gifts from K. Marschke (Ligand Phar- suggested that resistance to antihormonal treatment may reflect a
maceuticals, San Diego, CA). The RS-AR/T877A and VP16-AR/T877A ggested t ret o thoRmonl tre n may relc

containing the T877A AR mutant were generated using the QuickChange gain-of-function property of the AR mutant, wherein ligands which

site-directed mutagenesis kit (Stratagene, La Jolla, CA). The 5xGal4Luc3, would not normally activate AR can do so on the mutant. Of particular

MMTV-Luc, and pM-D30 plasmids were described previously (22). All of the importance was the observation that the mutant AR could be activated

cell culture media and supplements were purchased from Life Technologies, by a series of naturally occurring and synthetic glucocorticoids. Be-

Inc. (Grand Island, NY). LNCaP and CV-1 cells were obtained from American cause both AR and the GR can activate the MMTV-Luc reporter gene,

Type Culture Collection (Manassas, VA), and the PSA ELISA assay kit was it was important to confirm that the reporter gene was activated by the

purchased from ICN Pharmaceuticals (Orangeburg, NY). transfected AR and not by the low level of endogenous GR present in

Cell Culture and Transfection. Human prostate cancer LNCaP cells were this cell system. This was addressed by assaying the ability of the
maintained in RPMI medium supplemented with 8% fetal bovine serum, selected compounds to induce an activating conformational change in

essential amino acids, and sodium pyruvate. Monkey Kidney CV-1 cells were the structure of AR. In a previous study, we reported the identification
grown in MEM plus 8% fetal bovine serum, essential amino acids, and sodium of several short peptides which interact with AR when it is in a
pyruvate. Cells were seeded on 25-cm 2 tissue culture flasks a day before transcriptionally active conformation (22).4 One of these peptides,
transfection. Lipofectin-mediated transfection was performed essentially as transconany acie conorato that On oftes peti
described (22). Transfection was stopped after 5 h by replacing the DNA/ D30, contains a leucine-rich LxxLL motif that is often present in

lipofectin mixture with fresh medium containing charcoal-stripped serum and coactivators, facilitating their interaction with the receptor ligand-

incubated overnight, allowing cells to recover. Cells were then trypsinized and binding domain (26). To evaluate the interaction between the D30

seeded on 96-well plates the next morning. After cells were attached, hor- peptide and AR, we made use of a mammalian two-hybrid system.

mones were added, and the cells were incubated for 16 h before assaying. The D30 peptide was fused to the DNA-binding domain of the yeast

Luciferase and P-galactosidase activities were determined as described (22). protein Gal4 (Gal4-DBD), and the AR and its mutant were modified

Cell Proliferation Assays. LNCaP cells were seeded in 24-well plates with by insertion of a viral acidic activation domain VPI6 at their NH2

-4 X 104 cells/well and maintained in phenol red-free RPMI plus 8% terminus. When VP16-AR is recruited to the DNA-bound Gal4DBD-

charcoal-stripped serum for 3 days. On day 3, cells were treated with fresh D30 in the cells, it reconstitutes the transcriptional activity of the

medium containing different concentrations of compounds, and the medium Gal4-VP16 and drives the expression of a cotransfected reporter gene

was replaced every other day for 6 days. Cell numbers were determined at the containing five copies of the Gal4-response elements. Using this

end of 6 days by DPA DNA assays (23, 24). atning fo pie f the Galt -repons eleme Unthis

DPA DNA Assays. The DPA DNA assay was performed as described with assay, we found that the ability of compounds to activate MMTV-Luc,

minor modification (23, 24). Medium was removed by suction from attached through either AR or AR/T877A, correlates with their ability to effect

LNCaP cells. Prechilled 20% hyperchloric acid and 0.16% acetaldehyde were an activating conformational change within these proteins. With this

mixed at a 5:1 ratio and added to each well at 120 gl/well. Subsequently, 200 assay, we confirmed that compounds unexpectedly found to activate

/.l of 4% DPA/acetic acid were added. The plates were sealed with parafilm MMTV-Luc in our assay system were acting through AR (Fig. 1B).

and incubated at room temperature overnight. Color development was meas- The potentially important finding that compounds other than an-

ured with a microtiterplate reader with absorption wavelength 595 nrn and drogens could function as activating ligands for the mutant AR

reference wavelength 750 nm. prompted us to perform dose-response curves to determine whether

PSA ELISA. LNCaP cells were seeded at a density of 1 X 105 cells/well the concentrations required for AR activation are within the known

in phenol red-free RPMI plus 8% charcoal-stripped serum and incubated for 3 physiological/pharmacological range of these compounds. For these

days. Fresh medium (500 tl) containing the hormones to be tested were added studies, we limited analysis to those compounds which were likely to
on day 3 and incubated with the cells for 20 h. For the PSA ELISA, 50 kl of have the most clinical relevance in prostate cancer patients (Table 1).
medium from each well were used, and total PSA secreted in the medium was

determined using a PSA enzyme immunoassay test kit (ICN Pharmaceuticals) The results of this transcriptional assay indicate that the ECo for

following the manufacturer's protocol. Total PSA secreted in the medium was
normalized to total DNA content (measured by DPA DNA assay) in the wells. 4 Chang, C-Y. and McDonnell, D. P., unpublished data.
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DOC and Dex are 2.8 X I10t0 and 6.4 X I 0-' M, respectively, both the accumulation of PSA mRNA at concentrations similar to what we
being within achievable serum concentrations (Fig. 2). A number of determined to be optimal in the reporter gene assays in CV-1 cells
other compounds, including corticosterone and fludrocortisone, are (Fig. 3). Furthermore, using an ELISA assay, it was observed that
also potent agonists of the mutant AR, exhibiting EC,, values of cells treated with these compounds also secreted increased amounts of
7.7 X 10'9 and 2.6 X 10- m~, respectively. Corticosterone and DOC
are produced mainly in the zona glomemulosa of the adrenal cortex as Table I EC50 of different compounds on activation of wild-type and T877A
intermediary products in the biosynthesis of aldosterone (27). The mutant AR'

production of DOG is up-regulated in a number of disease states and Compounds AR/wild type ARITS77A
is not affected by orchiectomy or by the treatment with GnRH DHT 2. 10O" m 1.2X 10- " m
agonists or antagonists (28-30). Dex is often used in patients with OF>10- 7 M 1.0 X 10O9 M

advanced disease who have failed standard hormonal therapies. Corticosterone >1D-7 M 7.7 X 10-' m

The compounds which showed potential clinical relevance were DOC > -7M2.8 X 10-'om
- Aldosterone >10-7 M >10- 7 M

further analyzed for their ability to up-regulate PSA production tn Fludrocortisone >107 Mn 2.6 x 10tM

prostate cancer cells. PSA, an AR-regulated, secreted glycoprotein Hydrocortisone (cortisol) >10O7 >10-7 M

produced mainly in the prostate, is a validated marker used to track the BCotso e >to-" M >10-7
progression of prostate cancer (3 1). We chose LNCaP cells, a cell line Betamethasone >10-7 M>1-M

derived from the bone metastasis of a patient with advanced prostate Dexamethasone >10-7 M 6.4 X 10-" m

cancer, which carries the T877A mutation, for these studies. Semi- "CV-1 cells were transfected with either wild-type or T877A mutant AR expression
plasmid together with MMvTV-Luc and pCMV-jPgal. Different concentrations of hor-

quantitative RT-PCR of mRNA prepared from LNCaP cells treated mones (b0-13_ 10 7 m) were added 16 h before assaying. The data were plotted, and

with DOC and Dex indicated that these two compounds can induce EC5 0 was calculated using the software Prism 3 (Graphpsd, San Diego, CA).
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PSA into the medium when compared with untreated cells (Fig. 4A).
Although it has been shown that the LNCaP cells do not express
estrogen receptor, progesterone receptor, and GR (32, 33), we in-
cluded the antiandrogen bicalutamide in the assay to ensure that the Total PSA
response observed was indeed mediated by the AR but not other 1.00- -- DHT
receptors. We found that cotreatment with 10 gM bicalutamide was 0.90 -0-DOC
able to significantly suppress the PSA secretion induced by all of the U 0.80 -t -Dex0-0.0 -*X- OH-F

compounds tested, confirming the involvement of AR in this pathway 0.70
(Fig. 4B). The same concentration of bicalutamide has no inhibitory 0.50
effect on Dex-induced GR transcriptional activity (Fig. 4Q. E 0,0,

0 0.30
Androgens are mitogenic in LNCaP cells (33, 34). We decided, Z 0.20

therefore, to determine whether DOC and Dex, two compounds that 0.10
are potent activators of the AR/T877A mutant, can induce LNCaP cell 0.00
proliferation. We used a modified DPA assay to measure the total H -10 -8 -6
DNA content as an index of cell number. In 6-day proliferation
assays, DHT and OH-F induced a -2.5-fold increase in cell number, (B)
in agreement with previously published reports (Refs. 32 and 33; Fig. 0.70'
5A). DOC at concentrations of <1 nM can induce significant cell 06 L - bicalutamido
proliferation with maximum induction being reached at -10 riM. 0 U +bicalutarmide

0,0.50 -

other steroids (32, 33) was not observed when cells were treated with
DOC and OH-F. Our studies, thus far, have not produced an expla- E
nation for this phenomenon. Dex, although a potent AR agonist in z 0.10-

AR/T877A-dependent gene transcription and in induction of PSA 000

secretion, failed to stimulate significant cell proliferation under the DHT DOC Dex OH-F NH
conditions of our assay. When we treated the cells with increasing
concentrations of Dex in the presence of 0.1 nm DHT, we found that (C)
high concentrations of Dex can actually inhibit DHT-induced cell - GR
proliferation (Fig. 5B). However, Dex did not inhibit cell proliferation 300 - Dex (5 nM)
down to the same level as the no hormone-treated control but rather to -0 Dex (50 nM)

o 250a level similar to what Dex alone would achieve at that concentration. Q.
4200

150,
LNCaP

E 100

DHT DOC Dex HeLa o 0

NH-10-9 -8-10 -9 -8 -7 -9 -8 -7 -6 NH Log(M) 0

____NH -7 -6 -5

bicalutamidA InniM)
4- 0-actln Fig. 4. Both DOC and Dex induced PSA secretion in LNCaP cells. LNCaP cells were

maintained in RPMI media containing charcoal-stripped serum for 3 days. In A, fresh
media containing different concentrations of DHT, DOC, and Dex were added to the cells

4 PSA on day 4 and incubated for 24 h. Media (50 Al) was removed from each treatment group
and analyzed using a PSA-ELISA assay kit. In B, media containing 1 nM DHT, 10 nm
DOC, 5 M Dex, or 50 nM OH-F in the presence or absence of 10 M bicalutamide were
added to the cells and incubated for 24 h. Secreted PSA was measured as in A. Normalized

Fig. 3. Both DOC and Dex induce PSA mRNA expression in LNCaP cells. LNCaP PSA value was determined by dividing the total PSA secreted in the medium by the total
cells were maintained in RPMI media containing charcoal-stripped serum for 3 days. DNA content in the well. The values shown are the mean ±SD of three determinations.
Fresh media containing different concentrations of DHT, DOC, and Dex were added to the In C, CV-1 cells were transfected with GR expression plasmid together with MMTV-Luc
cells on day 4 and incubated for 24 h. Total RNA was isolated from cells and used in and pCMV-,Sgal. After transfection, cells were treated with various concentrations of
RT-PCR. Primer sets specific for PSA and 3-actin produced 214- and 515-bp PCR bicalutamide in the presence of either 5 or 50 nm Dex. Luciferase and 3gal activities were
products, respectively. Total RNA from HeLa cells was used as a negative control, analyzed 16 h after hormone addition.
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(A) quently prescribed as a pituitary suppressant to reduce the production
0.06 -*-DHT of adrenal androgens in patients who have failed hormonal therapy

0O-DOG and as an antiemetic in patients undergoing chemotherapy and/or0.05 ' -6- Dex

o 0.04 -X-OH-F radiation therapy. Our results show that Dex activates the AR/T877A-
i, mediated gene transcription at a dose that is achievable in the clinical

0.03 setting; however, a much higher concentration of Dex is required to

a 0.02 induce PSA secretion and cell proliferation in LNCaP cells. We
o believe that this may be attributable to the fact that higher levels of

0.01

AR are produced in the transient transfection system, which allows the

NH -10 -8 -6 dose-response curve to be shifted to the left. Indeed, in the LNCaP

Hormone concentrations log(M) cells, Dex does not activate the endogenous AR/T877A mutant-
mediated reporter gene expression as efficiently as in the CV-1 system

(13) 0.06_________(data not shown). However, the responsiveness to Dex can be restored
0.06 0- DHT+Dex by increasing expression of an exogenous AR/T877A in LNCaP cells

60.04 ... DHT-' H-F (data not shown). As noted earlier, amplification of AR has been

0.03' observed in a substantial number of specimens (30%) from patients
0.02- NH who have failed AA (9-11). These observations, coupled with our
0.01' data which shows that the Dex-bound AR/T877A can acquire a
.0NH -10 8 transcriptionally active conformation, suggest that Dex may be able to

Hormone concentrations log(M) function as an androgen in some prostate cancer cells. Therefore, we

Fig. 5. DOC induces LNCaP cell proliferation. LNCaP cells were maintained in RPM speculate that some tumors that have become refractory to prior

media containing charcoal-stripped serum for 3 days. In A, cells were treated with media flutamide treatment may have a less favorable response to subsequent
containing different concentrations of DHT, DOC, Dex, and OH-F on day 4, and the Dex treatment.
media were changed every other day for 6 days. In B, cells were treated with media Zhao et al. (19) have also recently described the loss of androgen-
containing 0.1 nMDHT in the presence of different concentrations of Dex or OH-F on day
4, and the media were changed every other day for 6 days. Cell numbers at the end of the dependence in tumors containing the L701H mutation, which allows
6-day treatment were determined using a DPA assay. The values shown are the mean the AR to be activated by cortisol and cortisone. Combining our data,
±SD of three determinations. The results shown are representative of multiple experi-ments performed under the same conditions, one might speculate that in so-called androgen-independent prostate

cancer, glucocorticoids may stimulate tumor cell growth by an AR-
mediated mechanism.

This indicated to us that with respect to proliferation, Dex functions Our data demonstrate that the T877A mutation allows the AR to be
more like a weak partial agonist. activated by multiple endogenous hormones and pharmaceuticals,

therefore circumventing the need for androgens to support tumor cell

DISCUSSION growth. Certain clinical strategies for treatment of advanced prostate
cancer bear reassessment based on this work: (a) the use of TAA

In this study, we have identified a panel of nonandrogenic activa- therapy; (b) the use of high-dose ketoconazole as second-line hormo-
tors of the AR/T877A mutant, an AR mutant frequently found to nal therapy; and (c) the indiscriminate use of Dex in a variety of
occur in late stage prostate cancers. These compounds can activate contexts. The results of this study highlight the complexity of AR
AR-mediated gene transcription at concentrations that are achievable pharmacology and reinforce the need to use mechanism-based ap-
either in normal physiological states or after administration as a drug. proaches in the search for new hormonal therapies for the treatment of
DOC is an endogenous hormone that is normally present in relatively prostate cancer.
low levels in the circulation, though high enough to activate AR/
T877A. DOC is also elevated in certain disease states and after
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Some aspects of ligand-regulated transcription ac- spectral variants of the green fluorescent protein.
tivation by the estrogen receptor (ER) are associ- This interaction was blocked by a single amino
ated with the estrogen-dependent formation of a acid mutation in the hydrophobic cleft. No FRET
hydrophobic cleft on the receptor surface. At least was detected when cells were incubated with the
in vitro, this cleft is required for direct interaction of antiestrogenic ligands tamoxifen and ICI 182,780.
ER with an a helix, containing variants of the se- E2, diethylstilbestrol, ethyl indenestrol A, and 6,4'-
quence LXXLL, found in many coactivators. In dihydroxyflavone all promoted FRET and activated
cells, it is unknown whether ER interactions with ER-dependent transcription. Measurement of the
the different LXXLL-containing helices are uni- level of FRET of ER with different LXXLL-contain-
formly similar or whether they vary with LXXLL ing peptides suggested that the orientations or af-
sequence or activating ligand. Using fluorescence finities of the LXXLL interactions with the hydro-
resonance energy transfer (FRET), we confirm in phobic cleft were globally similar but slightly
the physiological environment a direct interaction different for some activating ligands. (Molecular
between the estradiol (E2)-bound ER and LXXLL Endocrinology 16: 487-496, 2002)
peptides expressed in living cells as fusions with

T HE ERa AND ER/3 ARE members of a large class main unresolved but are at least partially related to
of nuclear receptors that regulate the transcription ligand-regulated alterations in ER structure and func-

of genes in response to binding small molecule ligands tion. In both its unliganded and liganded state, the ER
(1-3). The regulatory roles of ER in disorders like is part of larger complexes with other accessory pro-
breast cancer and osteoporosis make it an important teins (14). These accessory proteins, some of which
therapeutic target (4-9). One of the signature features are still unidentified, can stabilize ER structure and
of the ER-targeting compounds is that they may have regulate transcription at different DNA effector sites
different stimulatory or repressive effects depending (15). Ligand binding causes a conformation change in
on the cellular context. For instance, the breast cancer the ER (16, 17), which alters the affinities of the recep-
drug tamoxifen is an antiestrogen in breast tissue but, tor for these accessory proteins (18, 19). One possible
in the uterus, it mimics the estrogenic activity of the mechanism for SERM activity is that different ligands
physiological hormone, E2 (7, 10). Other compounds, recruit different sets of accessory proteins and thereby
such as the osteoporosis drug raloxifene, show a dif- differentially regulate gene transcription (20-22). Dif-
ferent clinical profile (11). Improved designer estro- ferential cofactor interactions, together with tissue-
gens with higher selectivity for specific tissues would dependent expression of ERa, ER/3, and each cofac-
permit tissue-specific, estrogen-regulated disorders tor, could explain tissue-selective SERM activity.
to be treated with minimal side effects (12, 13). To elucidate, and ultimately predict, differential

The mechanisms by which E2 and the selective ER SERM action, it is therefore essential to measure the
modulators (SERMs) show tissue-specific activities re- ligand-induced, direct interactions between the ER

and different accessory proteins in the cellular envi-
Abbreviations: CFP, Cyan fluorescent protein; DES, dieth- ronment (20-22). Many coactivators that interact with

ylstilbestrol; DHF, 6,4'-dihydroxyflavone; EIA, indenestrol A; the E2-activated ER contain one or more copies of a
FRET, fluorescence resonance energy transfer; GFP, green
fluorescent protein; L, leucine; RFP, red fluorescent protein; consensus sequence, LXXLL (L, leucine; X, any amino
SERM, selective ER modulator; X, any amino acid. acid) (23, 24). Structural studies have shown that an
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isolated LXXLL peptide will interact with a hydropho- toward RFP fused to the carboxy terminus of ERa.
bic cleft that forms on one surface of the E2-bound ER This positioning would be optimal for FRET from the
(16). This hydrophobic cleft constitutes the activation CFP donor to the RFP acceptor.
function AF-2, which is conserved amongst nuclear The ERa-RFP fusion was transcriptionally active
receptors and participates in ligand-regulated gene (Fig. 1). ERa-RFP or control expression vectors were
transcription (25). Two-hybrid interaction assays have transfected into ER-deficient HepG2 cells together
proved very useful for identifying and characterizing with either of two different, E2-sensitive promoters
the ligand-regulated interactions of LXXLL-containing controlling the expression of a luciferase reporter. One
factors and peptides with ER expressed in cells (20- promoter consisted of three copies of an estrogen
22). However, two-hybrid assays measure only response element linked to a minimal TATA box (32).
whether proteins interact, and not .whether they inter- This reporter defines the "classical" activities of ERa-
act with differing structural characteristics or affinities. REP, in which estrogen response is mediated by direct

We applied a microscope-based assay using fluo- ER interaction with a single DNA binding site in the
rescence energy resonance transfer (FRET) to mea-
sure in living cells the ability of a ligand to modulate promoter. The second promoter, from the comple-
LXXLL interactions with ER. FRET measures the prox- ment 3 gene (C3), contains three suboptimal ER bind-

imity of two molecules as a consequence of the de- ing elements, which together allow ER to bind and

gree to which the fluorescence energy excited in a regulate transcription in response to E2 (33).

donor fluorophore, linked to one factor, is not emitted Two days after transfection, promoter activity was
and instead is nonradiatively transferred to an accep- assessed by measuring the amount of luciferase ex-
tor fluorophore, linked to another factor (26-30). We pressed in extracts of cells grown in E2-deficient me-
observed in the cellular environment that ERa, fused dia or in parallel cells treated with 10  M E2. Both the
to the red fluorescent protein (RFP) interacted directly 3xERE (Fig. 1, black bars) and C3 (Fig. 1, white bars)
with LXXLL peptides, fused to the cyan (CFP) or green promoters were activated upon E2 addition. In con-
(GFP) fluorescent proteins. These interactions were trast, tamoxifen and IC1182,780 did not activate ERa-
promoted by E2 but blocked by tamoxifen and another RFP at either promoter, even though wild-type ERa
SERM, ICI 182,780, which confirmed prior studies in weakly activated the C3 promoter in the presence of
two-hybrid (21) and fluorescence colocalization (31) tamoxifen, but not ICI 182,780 (22, 33). Thus, ERa-
assays. Like E2, the synthetic ligands diethylstilbestrol RFP was defective in tamoxifen activation. Because
(DES), ethyl indenestrol A (EIA), and 6,4'-dihydroxyfla- the estrogenic activities of E2 were not disrupted by
vone (DHF) promoted FRET between ERa-RFP and the fusion of RFP to the carboxy terminus of ERa,
two different LXXLL peptides fused to GFP. All these ERa-RFP 'emained viable for studying agonist activa-
interactions were dependent upon the integrity of AF-2 tion via AF-2.
within the ligand binding domain of ERa. E2, DES, EIA,
and DHF yielded similar levels of FRET for the inter-
action of ER with one LXXLL peptide. However, small,
ligand-selective differences in the level of FRET were
measured for interaction with the other LXXLL target
sequence. This indicated that there were subtle,
ligand-specific, and LXXLL-specific differences in the
orientation or affinity of LXXLL interaction with ER. The E ___

accurate measurement of such nuances in the inter- 2 18a. 16 *3xERE-TATA
actions of ER in the cellular environment will help "aC3
distinguish the similarities and cell-type dependent M 12
differences in ligand-selective ER activities. .9

= 10

RESULTS 0

Fluorescent Protein-Tagged ERa and LXXLL for 0
< 0

FRET Measurements _

o No Ligand Estradiol Tamoxifen ICIu. 182,780
Isolated LXXLL sequences retain the ability to interact

specifically with estrogen-bound ER (16, 21). In our Fig. 1. E2-Regulated Activation of Two Promoters by the

initial studies, the 19-amino acid-long LXXLL-contain- ERa-REP Fusion Protein
HepG2 cells, grown in E2-free media, were transfected

ing sequence F6 (21), previously shown to form a with the ERa-RFP expression vector and either of two re-
complex with ERa (21, 31), was fused to the carboxy porter plasmids expressing luciferase under the control of
terminus of CFP. X-ray crystallographic structures of E2-responsive promoters. The 3xERE-TATA and comple-
LXXLL bound to ER (16) predict that, if LXXLL binds ment C3 promoters were activated upon incubation of the
directly to ER, the CFP fluorophore should project cells with E2, but not by the SERMs tamoxifen or ICI182,780.
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Controls for the Accurate Measurement of FRET red cyan FRET
between CFP-LXXLL and ERa-RFP A, mLm
The measurement of FRET relies on the accurate
quantification of the amount of fluorescence emitted
by the donor and acceptor fluorophores upon donor
excitation (29). The donor CFP is excited optimally by B,
blue light to emit light of energy in the blue-green ERu-RFP
(cyan) wavelength, whereas the RFP acceptor emits
red light upon excitation by light of mid-visible wave-
lengths, including cyan. If the cyan fluorescent CFP is c
in close proxim ity to RFP ( 100 A apart), som e of the C P L X L
fluorescence energy from CFP will be absorbed by, +
and excite, RFP. Thus, when excited by blue light, *
energy transfer from CFP to RFP would decrease the ERoc-RFP
emission of cyan light and increase the emission of red Fig. 2. FRET Microscopy of LXXLL Interactions with ERa
light. GHFT1-5 cells grown in estrogen-free media were trans-

For controls, we first quantified the amount of fluo- fected with the A, CFP-LXXLL expression vector; B, ERa-
rescence in cells that independently expressed ERa- RFP expression vector or C, both vectors together, then
RFP or CFP-LXXLL. Expression vectors encoding incubated with E2 (shown) or other ligands (not shown). Dig-
ERa-RFP or CFP-LXXLL were transfected into ital fluorescent images were collected using red-, cyan-, or
GHFT1-5 pituitary progenitor cells grown in estrogen- FRET-selective excitation and emission filters. Coexpression
free media and plated onto microscope coverslips. of CFP-LXXLL with ERa-RFP causes the LXXLL peptide to
GHFT1-5 cells contain endogenous ERa, but pro- occupy the intranuclear location of ERa in estrogen-treated

moter responses to E2 in GHFT1-5 cells are not sig- cells (31).

nificantly altered upon ERa overexpression (34, 35).
Because overexpression of ERa in GHFT1-5 cells
does not reduce ER response as it does in many other energy emitted by CFP in the red channel was statis-
cell types (36), the actions of expressed ER measured tically insignificant. Similarly, the bleedthrough of ERa-
in GHFT1-5 cells likely mimic those of endogenous RFP into the cyan channel was 0.0016 ± 0.0019 the
receptors. GHFT1-5 cells also have a flat morphology, amount of emission in the red' channel. These ratios
which facilitates data collection by fluorescence mi- were similar regardless of the ligand treatment for
croscopy (31, 37). The transfected cells were treated each cell (not shown). Although the amount of CFP-
with E2, or other ligands as discussed later, or with the LXXLL or ERa-RFP expressed in each transiently
control vehicle (ethanol). After allowing 24 h for ex- transfected cell varied, plotting the amount of
pression, the amounts of fluorescence emitted from bleedthrough as a function of the amount of CFP-
the control cells separately expressing ERa-RFP and LXXLL or ERa-RFP fluorescence in each cell (Fig. 3, A
CFP-LXXLL were measured in the cyan, red, and FRET and B, open boxes) showed that these ratios were
channels by quantitative fluorescence microscopy. consistently measured regardless of the amount of
Digital images from cells expressing CFP-LXXLL were CFP-LXXLL or ERa-RFP expressed.
collected by specifically exciting CFP with light of
wavelengths between 431 and 434 nm and collecting Ligand-Regulated FRET between CFP-LXXLL
emissions between 455 and 480 nm (Fig. 2A, cyan). and ERa-RFP
Digital images from the ERa-RFP control cells were
collected by 550-560 nm excitation and 580-630 nm As described previously (31), expression of ERa
emission (Fig. 2B, red). caused the coexpressed LXXLL peptide to colocalize

The excitation/emission parameters for CFP and with the E2-bound ERa, whereas the LXXLL peptide,
RFP resulted in little bleedthrough fluorescence, re- by itself, distributed throughout the cell (Fig. 2). To
spectively, in the control cells expressing ERa-RFP determine if there was a hormone-regulated, direct
and CFP-LXXLL (Fig. 2B, cyan; Fig. 2A, red). This interaction of LXXLL with colocalized ERa, we mea-
bleedthrough was accurately quantified by marking sured FRET between coexpressed CFP-LXXLL and
each nucleus containing CFP-LXXLL or ERa-RFP as a ERa-RFP. The low level of CFP and RFP bleedthrough
contiguous assembly of pixels containing more fluo- enabled us to selectively and accurately measure the
rescence than the background. The total amount of amounts of CFP-LXXLL and ERa-RFP coexpressed in
cyan and red fluorescence above the background flu- the same cell. These values are then used to correct
orescence was then measured within the nucleus of for the contributions of the known amounts of CFP and
each control cell. Red fluorescence from 27 different RFP to the FRET channel, as discussed below.
E2-treated cells expressing only CFP-LXXLL was neg- In cells coexpressing CFP-LXXLL and ERa-RFP,
ligible: on average, 0.0009 ± 0.0026 the amount of FRET was detected, upon blue light excitation, as an
cyan fluorescence. This means that the amount of increase in acceptor fluorescence transferred from the
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not vary with the amount of ERa-RFP present in each cell
AY7 1.2 -(Fig. 3B, black boxes).

02 1>_ FRET from CFP To calculate the relevant FRET/cyan from donor ra-
S1.0[c red from CFP tio, we first calculated the amounts of CFP-LXXLL and

0.8 ERa-RFP present in the coexpressing cells. This was
achieved by subtracting the minor contributions of

0.6 CFP to the red channel (0.09% the value of cyan

u 0.4 fluorescence using the matched control data in the
0. ~prior section) and of RFP to the cyan channel (0.16%

,0 'the value of the corrected red channel). We then sub-
T tracted the contribution of RFP to the FRET channel

E 500 1000 1500 2000 2 (2.88% the value of the corrected red channel). This
-0.2 0 ~0 remaining signal in the FRET channel contained the

Average Intensity CFP-LXXLL CFP bleedthrough to the FRET channel plus any sen-
sitized emissions that resulted from the transfer of

B, energy from CFP to REP. if there was no FRET, theBy 1.2| FRET/donor (remaining FRET/corrected cyan, hereaf-
__L_£y--c-cyan from RFPter FRET/cyan) ratio remained that of the donor CFP

S10REPalone (0.2455). However, if there was transfer of en-

• 0.8 ergy from CFP to RFP, the amount of CFP fluores-
cence decreased and the amount of FRET increased,

.~0.6-

so that the FRET/cyan ratio increased.
u 0.4 The FRET/cyan ratio averaged from 32 E2-treated
C
W cells coexpressing CFP-LXXLL and ERa-RFP in-

0.creased to 0.5412 ± 0.2018. Because cells with low
0 0.0 , -- f-- -amounts of CFP-LXXLL relative to ERa-RFP have

.0. 500 1000 1500 2000 2530 fewer CFP donors in close proximity to the RFP ac-
-0.2 .ceptor, the FRET/cyan ratio varied with the relative

Average Intensity ER-alpha-RFP amounts of RFP and CFP fluorescence measured in
Fig. 3. Contribution of CFP-LXXLL and ERa-RFP to Each each cell. To account for this variation, the FRET/cyan
Excitation/Emission Channel ratio was graphed against the relative amounts of

Total background-subtracted fluorescence from each nu- bleedthrough-corrected cyan and red fluorescence for
cleus was quantified in each channel for each digital image. each E2-treated cell (Fig. 4, black boxes). The slope of
A, The amount of fluorescence measured in the red channel this graph was linear and consistent between experi-
when only CFP-LXXLL was expressed (red from CFP) was ments, indicating that the acceptor (RFP)-driven level
minimal (0.09%, on average, of the amount of fluorescence in of inditin th ce acptor the levl
the cyan channel). 24.55% of the cyan fluorescent of CFP- of FRET within each cell was a constant. If the LXXLL
LXXLL alone bled through into the FRET channel (FRET from peptide were not attached to CFP (Fig. 4, gray trian-
CFP). B, Fluorescence bleedthrough of ERa-RFP-expressing gles) or if CFP-LXXLL and ERa-RFP coexpressing
cells in the cyan (cyan from RFP) and FRET (FRET from RFP) cells were treated with the antiestrogen ICI 182,780
channels was 0.16% and 2.88%, respectively. These values instead of E2 (Fig. 4, white boxes), the FRET/cyan ratio
were constant regardless of the amount of CFP-LXXLL or remained identical to the 0.2455 FRET/cyan ratio of
ERa-RFP transiently expressed in these cells. This demon- CFP-LXXLL alone (Fig. 4, Xs at acceptor/donor = 0)
strates the accuracy by which these physical constants for regardless of the relative amounts of CFP-LXXLL and
each fluorophore was measured. ERa-RFP measured in the cell. This validated our cal-

culations and demonstrated the accuracy with which
we measure the energy transfer. Thus, we observed a

donor (FRET channel: 431-434 nm excitation/580-630 ligand-regulated direct interaction of an LXXLL pep-
emission) relative to a decrease in donor fluorescence tide with ERa in living cells.
(cyan channel: 431-434/455-480). Therefore, FRET was
measured as an increase in the ratio of FRET/cyan fluo- Ligand-Regulated, AF-2-Dependent FRET
rescence from a cell expressing both CFP-LXXLL and between GFP-LXXLL and ERa-RFP
ERa-RFP relative to the FRET/cyan ratios emitted from
independently expressed CFP-LXXLL and ERa-RFP. In To further validate our FRET measurements, we re-
the control CFP-LXXLL-expressing cells, the amount of peated the FRET studies of ERa-RFP with the same F6
bleedthrough fluorescence into the FRET channel was LXXLL peptide, but labeled with GFP instead of CFP.
0.2455 ± 0.0094 that emitted in cyan channel (Fig. 2A), Control measurements similar to those described above
which did not vary with the overall amount of CFP-LXXLL for the CFP-LXXLL construct were conducted to deter-
in the cell (Fig. 3A, Xs). The bleedthrough of ERa-RFP mine the bleedthrough of GFP-LXXLL fluorescence
fluorescence to the FRET channel was 0.0288 ± 0.0066 into the red and FRET channels. These GFP-LXXLL
that emitted in the red channel (Fig. 2B), which also did bleedthrough constants, and bleedthrough constants
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1.2 n CFP-LXXLL-F6 + A,
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0.8 o CFP-LXXLL-F6 + 0.16 ER-alpha-REP,
OR .' -• Estradiol

______06- •ER-alpha-RFP, _o U o GFP-LXXLL-F6 +
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1 1LE alone, Estradiol
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Acceptor/Donor Instensity Ratio (redlcyan) 0 1 2 3 4

Fig. 4. Estrogen-Specific Interaction of CFP-LXXLL and Acceptor/Donor Intensity Ratio (red/green)

ERa-RFP in Living Cells
Background-subtracted fluorescence from each nucleus BI

was corrected for the bleedthrough values of red from CFP,
cyan from RFP, and FRET from RFP (see Results). The re- .G-X20M GFP-LXXLL-D2 +

maining amount of fluorescence in the FRET channel isolates 0.16 ER-alpha-RFP,
the contribution from the donor CFP to the FRET channel. It Z' 0. Estradiol
also contains emissions resulting from any energy transferred C_02 • = o GFP-LXLL-D2 +

from CFP to RFP. Productive FRET also is accompanied by Z m 0 - ER-a-REP K362AEstradiol
decreased emission in the donor, cyan, channel. Thus, the 0 u 0.08 - o GFP-LXXLL-D2 +

FRET/cyan ratios from the isolated donor were calculated for rr-, -, ER-alpha-REP,
each nucleus using the bleedthrough-subtracted values to 6. .04 Tamoxifen

determine the amount of energy transferred. These FRET/ II 0 GFP-LXXLL-D2
alone, Estradiol

cyan ratios were plotted against the amount of acceptor (red) u. 0.00 -

relative to donor (cyan). When the cells are treated with E2 0 1 2 3 4
(black boxes), the FRET/cyan ratio increased linearly with the
red/cyan ratio at a slope characteristic of the efficiency of Acceptor/Donor Intensity Ratio (red/green)
energy transfer from CFP to RFP. In contrast, the FRET/cyan Fig. 5. AF-2-Dependent Interaction of Two Different LXXLL

ratio was not different from CFP-LXXLL alone (Xs) if the cells Peptides with ERa in Living Cells
were treated with the SERM IC1182,780 (white boxes) or if the FRET/Donor ratios were calculated for ERa-RFP interac-

LXXLL peptide was removed from CFP (gray triangles). tions with two different LXXLL peptides (21, 31) attached to
GFP: A, F6 (same as in Fig. 4) and B, D2. The FRET/donor
ratio increased with the acceptor/donor ratio in cells treated
with E2 (black boxes), but not tamoxifen (white boxes). Mu-

determined from parallel ERa-RFP control cells, were tation of lysine 362 in the hydrophobic AF-2 cleft of ERa
used to calculate the amount of ligand-regulated FRET in resulted in a loss of FRET (white circles) indicating that AF-2

cells coexpressing GFP-LXXLL and ERa-RFP. Coex- was required for the direct interaction of LXXLL with ERa-

pressing cells treated with tamoxifen showed a FRET/ RFP measured by FRET in living cells. Similar measurements
donor (FRET/green) ratio of 0.0530 -t 0.0043 (n = 18) were made for both peptides for different SERMs (Table 1).

(Fig. 5A, white boxes), that was not significantly different
from the 0.0541 ± 0.0039 ratio measured in the control
cells expressing GFP-LXXLL alone (Fig. 5A, Xs). In the presence of E2, the FRET/green ratio from

After treatment with E2, cells containing both ERa- coexpressed wild-type ERa and LXXLL increased with
RFP and GFP-LXXLL showed a FRET to green ratio of the RFP/GFP ratio in the cells (Fig. 5A), confirming that

0.0971 ± 0.0291 (n = 44) that varied proportionally to bona fide FRET was detected. The slopes of these

the RFP/GFP ratio (Fig. 5A, black boxes). This con- graphs, summarized in Table 1 as the range of slopes
firmed that E2 promotes an interaction between ERa encompassing the 95% confidence intervals, empha-
and LXXLL in living cells, whereas tamoxifen does not. sized that interaction of the F6 LXXLL peptide with

When E2-treated cells coexpressing ERa-RFP and ERa was promoted by E2 (slope = 0.017 to 0.021), but
GFP not containing the 19-amino acid LXXLL peptide not by the SERMs tamoxifen (slope = -0.001 to

were analyzed, the FRET/GFP ratio remained at 0.001) or ICI 182,780 (slope = -0.002 to 0.000). Thus,

0.0549 _ 0.0098 (n = 14). In addition, mutation of a FRET precisely measured a ligand-specific, AF-2-

single lysine in the hydrophobic cleft of ERa to alanine dependent direct interaction between ERa and an
(K362A) abolished FRET of GFP-LXXLL with ERa-RFP LXXLL peptide in living cells.
in E2-treated cells (Fig. 5A, white circles) as the FRET/
GFP ratio remained as 0.0557 ± 0.0063 (n = 27). This Ligand-Specific Interactions of Different LXXLL

demonstrated that the cleft, which is essential for E2- Peptides Binding to AF-2 in ERa
dependent transcription via AF-2 (25), is required for

direct interaction of LXXLL with ERa in the physiolog- FRET measurements are highly sensitive to distance

ical environment of the living cell. between the fluorophores, and fall off to the sixth
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Table 1. Ninety-Five Percent Confidence Intervals in Slopes and Y-Intercepts of FRET/Donor vs. Donor/Acceptor Graphs
(RFP/GFP <4)

GFP-LXXLL-F6 GFP-LXXLL-D2

Slope Y-intercept Slope Y-intercept

No ERo-RFP No slope 0.053-0.055 No slope 0.053-0.055
ERa-RFP wt

No hormone 0.007-0.011 0.053-0.057 0.007-0.009 0.053-0.056
E2 0.017-0.021 0.053-0.058 0.022-0.026 0.053-0.058
Tamoxifen -0.001-0.001 0.054-0.055 -0.005-0.003 0.053-0.055
ICI 182,780 -0.002-0.000 0.054-0.055 -0.001-0.002 0.054-0.055
DES 0.016-0.021 0.052-0.057 0.018-0.023 0.053-0.057
EIA 0.017-0.021 0.053-0.056 0.014-0.018 0.053-0.057
DHF 0.017-0.021 0.053-0.056 0.029-0.034 0.052-0.055

ERa-RFP K362A
No hormone -0.004-0.001 0.054-0.057 -0.005-0.003 0.054-0.055
E2 -0.003-0.001 0.054-0.059 0.001-0.003 0.053-0.056
DES -0.004-0.002 0.054-0.056 0.002-0.006 0.053-0.056
EIA -0.001-0.002 0.053-0.056 0.000-0.003 0.054-0.056
DHF -0.007-0.002 0.054-0.056 0.000-0.003 0.054-0.055

power as the distance between them increases (28, tiestrogenic activities that were reported previously to
29). The distance dependency of FRET would, in prin- bind ER with high affinity (38-40): ethyl indenestrol A and
cipal, allow the detection of small conformational dif- 6,4'-dihydroxyflavone (Fig. 6). These compounds and a
ferences between interacting molecules. We therefore known ER agonist diethylstilbestrol were compared with
measured the level of FRET between ERa-RFP and E2 for their abilities to elicit FRET in cells coexpressing
another 19-amino acid-long, LXXLL-containing pep- ERa-RFP and GFP-LXXLL-F6 or GFP-LXXLL-D2. E2,
tide, "D2" (21), fused to GFP. D2 contains sequences DES, EIA, and DHF all were able to trigger significant
flanking the LXXLL motif that differ from those in the F6 levels of FRET between ERa-RFP and both LXXLL pep-
peptide. tides (Table 1, slopes, italic). All of these ligand-regulated

Control measurements established that the FRET/ interactions were blocked upon mutation of lysine 362 in
GFP and RFP/GFP ratios for GFP-LXXLL-D2 alone were ERa to alanine (Table 1, ERa-RFP K362A), indicating that
no different from those measured for GFP-LXXLL-F6 (not LXXLL was interacting directly with the hydrophobic
shown). When coexpressed with ERa-RFP, GFP-LXXLL- pocket of ERa in each case.
D2, like GFP-LXXLL-F6, showed E2- and AF-2-depen- For interaction of ERa-RFP with GFP-LXXLL-F6, the
dent FRET that was not promoted by tamoxifen (Fig. 5B). levels of FRET activated by E2, DES, EIA, and DHF were
In the presence of saturating (10- M) E2, the slopes of not statistically different (P > 0.05) (Table 1, GFP-
the FRET/GFP vs. RFP/GFP graphs (reported as 95% LXXLL-F6 slopes). Similarly, the levels of FRET deter-
confidence intervals) were similar, but slightly different, mined for GFP-LXXLL-D2 interaction with ERa-RFP in
for GFP-LXXLL-F6 (Table 1, 0.017-0.021) and GFP- the presence of DES and EIA were not significantly dif-
LXXLL-D2 (0.022-0.026). This suggested that the D2 and ferent than those observed with GFP-LXXLL-F6 (Table
F6 peptides bound to the hydrophobic cleft of E2-bound 1). In contrast, DHF activated a significantly greater level
ERa with marginal differences in orientation or with of FRET with the D2 LXXLL peptide than with the F6
slightly different affinities. LXXLL peptide (Table 1, boldface). Thus, all compounds

Using FRET to Distinguish SERM- promoted the direct interactions of two different LXXLL

Regulated Interactions peptides with ERa in the cellular environment, but pre-
cise FRET measurements allowed subtle variations in

The ability of FRET to measure subtle differences in the those interactions to be observed.

direct interactions of the LXXLL motif and ERa in living The similar levels of FRET with the F6 peptide sug-

cells could be used as a sensitive new assay for detect- gested that the ER-binding compounds EIA and DHF

ing specific activities of new SERMs in vivo. All ligands both caused ERa to adopt a conformation that per-
that trigger LXXLL motif binding to ERa are known to mitted LXXLL-F6 to bind into the hydrophobic AF-2
strongly activate transcription at promoters containing cleft in the same orientation as occurs when E2 or DES
the classical ERE promoter element. Therefore, a com- binds to ERa. Because reporter gene assays show
pound that elicits a strong level of FRET between ERa- that DES and E2 activate transcription from a classical
RFP and GFP-LXXLL in this assay might also activate ERE in an AF-2-dependent fashion, the similar AF-2/
transcription of an ERE-driven gene in a reporter assay. LXXLL-F6 interactions adopted by the EIA and DHF-

To test this hypothesis, we synthesized and tested two bound ERs suggested that these compounds might
synthetic ligands of uncharacterized estrogenic or an- activate transcription at an ERE site. Reporter gene
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Fig. 6. Structures of the ER-Binding Compounds Used in this Study
The phenolic ring common to all compounds is oriented to the left. There are two different phenolic rings in ethyl indenestrol

A and 6,4'-dihydroxyflavone, for which only one of the orientations is shown.

assays were performed in HeLa cells using transiently tected with in vitro column-binding assays that rely on
transfected wild-type ERa and a luciferase gene driven the interactions of purified proteins in artificial buffers.
by the classical ERE from the vitellogenin promoter Alternatively, two-hybrid assays detect an ill-defined
(Fig. 7). The promoter was activated upon expression cellular association between two proteins as the acti-
of unliganded ERa. This activation was blocked by the vation of a downstream reporter gene. As more is
SERM raloxifene, which acts as an antiestrogen for understood about the mechanisms underlying nuclear
AF-2-dependent transcription (41). Incubation with receptor activation, new challenges are arising to ef-
10' M EIA and 10 - ' M DHF both activated transcrip- fectively and efficiently measure those interactions,
tion from an ERE site as effectively as 10- 5 M E2. Thus, particularly in living cells (31, 45-49).
the ability of two different LXXLL peptides to produc- Only recently has FRET been used to measure pro-
tively interact with ERa AF-2 in living cells was asso- tein-protein interactions in the environment of living
ciated with agonist activity of four separate ligands, eukaryotic cells (28, 49, 50). FRET has been used to
each with a distinct chemical structure. detect nuclear receptor interactions with cofactor

fragments, labeled with spectral variants of GFP (49).
We show here that LXXLL peptides by themselves are

DISCUSSION sufficient to interact, in an agonist-regulated fashion,
directly with ERa in the cellular environment (Table 1).

The ligand-regulated interactions of a receptor with its Moreover, these interactions are wholly dependent
cofactors are fundamental to nuclear receptor action upon AF-2 in ERa. A weak interaction of LXXLL with
(3, 15, 42-44). These interactions are commonly de- ERa was also detected in the absence of ligand. This
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3.0 48) and cofactors (48) at isolated regions within the
nucleus may help to determine if the ligand-selective

2.5 changes in FRET efficiency arise from altered kinetics

2.0 in the LXXLL interaction with ERa. Measuring the re-
V: covery of FRET after selectively photobleaching the

1.5 interacting cofactor would more precisely correlate
fluorescence recovery with direct interactions with

2 ERa in the cellular environment.
0. 0.5 The benefits of drugs that regulate nuclear receptor

0activities in some tissues are often counteracted by
0.0 T E2 -1- -- unwanted receptor actions in other tissues. It is there-

Nlone Ralox. E2 EIA DHF fore important to identify compounds with desirable
Ligand selective modulatory properties (12, 13, 20-22, 41,

Fig. 7. ER Binding Compounds that Promote FRET also Ac- 52). However, most current assays for interaction are
tivate a Simple ERE-TATA Promoter insufficient to distinguish the tissue-selective actions

HeLa cells transfected with an expression vector for wild- of new compounds from previously existing SERMs
type ERa and with an E2-regulated promoter were treated (22, 41). The precise measurement of ER/cofactor in-
with different ligands. Raloxifene blocked promoter activation
by expressed ER interacting with estrogens in the cell culture teractions afforded by FRET will allow the detection, in
media. E2, EIA, and DHF all caused further activation of the different cellular environments, of more subtle differ-
promoter. ences in the interactions of ER, or any other nuclear

receptor, bound to different ligands. This will aid the
development of clinically effective compounds that

ligand-independent interaction was blocked by the regulate specific interactions in specific cell types.

same K362A mutation in AF-2 that abrogated agonist- Indeed, we found that FRET between ER and two

dependent FRET. Thus, in living cells, both the ligand- LXXLL-containing peptides was useful in predicting
independent and agonist-dependent interactions of the E2-mimicking activity of two previously untested
LXXLL with ERa are dependent upon AF-2. ER-binding compounds, EIA and DHF. However, dif-

Our approach allowed us to precisely quantify the ferent levels of FRET for the LXXLL interactions with
level of FRET between the interacting factors. Because AF-2 suggest that these compounds possess some-
the amount of FRET falls very rapidly, to the sixth what distinct properties. This precise quantification of
power, with the separation of the fluorophores (28-30), FRET between nuclear receptors and conformation-
differences in the relative spatial orientations of ER specific peptide probes developed by us (20-22) and
and LXXLL affect the amount of FRET measured in others (53) will greatly contribute to a better mecha-
each complex. In our studies, the efficiency of FRET nistic understanding of estrogen action and may be
between ERa and a given LXXLL peptide was similar potentially useful for discovering SERMs with im-
for each ligand. However, there were subtle differ- proved tissue-selective actions.
ences, particularly with 6,4'-dihydroxyflavone for
which the level of FRET was higher for ERa interaction
with LXXLL-D2 than with LXXLL-F6. The slight varia-
tions in the levels of FRET indicate subtly different MATERIALS AND METHODS
ligand-specific interactions. Different levels of FRET
may suggest that the LXXLL peptide is bound to AF-2 Analysis of Estrogen-Regulated Promoter Activation
in a different position such that the GFP and RFP
fluorophores are different distances apart. Alterna- The 3xERE-TATA-Luc and C3-Luc estrogen-responsive pro-
tively, the on- or off-rates for the interaction of LXXLL moters have been previously described (32, 33). The carboxy

terminus of human ERa was fused, in frame with an eight-
with ERa may be different, leading to quantitatively amino acid linker, to the amino terminus of RFP by inserting
different levels of FRET. For instance, the higher level a PCR-generated ERa cDNA into the Nhel and BamHI sites of
of LXXLL FRET with all liganded ERs than with the pDsRedl-Ni, an RFP expression vector (CLONTECH Labo-
unliganded ER is consistent with prior observations ratories, Inc., Palo Alto, CA). The ERa-RFP expression vector
that agonist binding dramatically stabilizes the LXXLL was cotransfected with either the 3xERE-TATA-Luc or C3-

Luc reporters into HepG2 cells and the transfected cells were
interaction with ERa (31, 51). treated with E2, tamoxifen, ICI 182,780 or ethanol control

The FRET studies described here, by themselves, vehicle as previously described (21). Cells were then lysed
showed the similarities and differences in LXXLL in- and the amount of luciferase activity in the extracts was
teractions with ERa bound by four different activating measured as previously described (21).
ligands and two different AF-2-blocking ligands. Other The synthesis, ER binding properties and transcriptional
techniques may complement the FRET studies of activation profiles of EIA and DHF will be reported elsewhere.

Transfection conditions and assay protocols used for the
ligand-selective nuclear receptor action. Determining testing of EIA and DHF with wild-type human ERa and the
the kinetics of fluorescence recovery after photo- ERE reporter gene assay in HeLa cells (Fig. 7) were identical
bleaching fluorophore-linked nuclear receptors (46, to those reported previously (41, 54).
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Mutations in the AR are frequently found in re- peared to contradict the findings of others that
lapsed prostate cancers, some of which permit suggest that coactivator binding to AR-AF2 is not
antiandrogens as well as nonandrogenic com- required for AR activity. In probing this paradox
pounds to function as androgens. However, the further, however, we determined that the role of
molecular mechanism(s) by which these mutations AR-AF2 appears to be to stabilize the overall struc-
enable this aberrant AR pharmacology is still un- ture of the receptor, allowing the amino terminus to
known. To explore this issue, we used a series of interact with appropriate coactivators. This con-
LxxLL-containing peptides (L, leucine; x, any amino clusion is supported by our finding that overex-
acid) to probe the conformation of the AF-2/coac- pression of the AF2-binding peptides blocks the
tivator binding pocket of AR and AR mutants when interaction between the amino and carboxyl
complexed with different ligands. We have identi- termini of AR but does not attenuate AR transcrip-
fied in a previous study two peptides that bind to tional activity. This can be explained by the fact
the wild-type AR in an agonist-dependent manner, that overexpression of the LxxLL-containing pep-
Interestingly, we found these same peptides also tide or the amino terminus of AR appears to have a
interacted with several AR variants that are fre- similar effect on the AR-ligand binding domain, as
quently found in antihormone refractory prostate both have the ability to stabilize agonist binding by
cancers, in the presence of either androgens or decreasing ligand off-rate. Thus, we believe that
antiandrogens. This suggests that the agonist ac- resistance in certain prostate cancers occurs as a
tivity of antiandrogens and other physiologically consequence of receptor mutations that enable
relevant ligands occurs because they, in the back- antagonist-and/or nonclassical ligand-bound AR
ground of these mutations, allow AR-AF2 to adopt to present a wild-type-like AF-2 conformation.
an active conformation. Initially, this result ap- (Molecular Endocrinology 16: 647-660, 2002)

THE AR belongs to the nuclear hormone receptor function domain (AF-1) at the amino terminus of the
superfamily of ligand-activated transcription fac- receptor. The two AF domains in these receptors can

tors that modulate diverse biological functions in re- either synergize or function independently to enable
sponse to either endogenous or exogenous stimuli (1, the regulation of gene transcription in a cell-type
2). Members of this gene family share sequence ho- and/or tissue-specific manner (6-8).
mologies and exhibit similar modular domain struc- In the past few years, it has become clear that the
tures (3-5). Nuclear receptors contain a carboxyl- nuclear receptors do not function alone and that the
terminal ligand-binding domain (LBD) that allows them activities they manifest are the result of their ability to
to bind their cognate ligands, and a central DNA bind- interact with other cellular coregulator proteins, coac-
ing region (DBD) that permits their interaction with tivators, and corepressors (9-11). Structural and bio-
specific DNA sequences located within the promoter chemical studies have determined that upon binding
regions of the target genes that they regulate. In most their cognate hormone, the AF-2 of the nuclear recep-
receptors, the LBD also harbors a transactivation tors undergoes an activating conformational change,
function domain (AF-2), a key protein-protein interac- enabling the receptor to interact with various coacti-
tion module that allows these receptors to direct the vators (12, 13). Most of the validated coactivators con-
assembly of multiprotein transcription complexes at tain a leucine-rich LxxLL-motif (L, leucine; and x, any
target genes. Those receptors that bind with high af- amino acid) that mediates their interactions with the
finity to steroid hormones such as androgens, estro- receptor AF-2 (14). Crystallographic studies using the
gens, glucocorticoids, mineralcorticoids, and proges- ERa as a model revealed that when ER is activated by
tins, also contain at least one additional activation an agonist, the LxxLL-motif from the coactivator

GRIP-1 (glucocorticoid receptor interacting protein-I)
Abbreviations: AF-1, Activation function-I; DBD, DNA binds in a hydrophobic surface atop the ligand-bind-

binding region; DHT, 5a-dihydrotestosterone; GRIP-i, glu- ing pocket (12). It appears that most receptors have
cocorticoid receptor interacting protein-I; L, leucine; LBD,
ligand binding domain; OHF, hydroxyflutamide; SRC-1, ste- evolved to utilize this hydrophobic surface as a major
roid receptor coactivator-1; x, any amino acid. docking site for coactivators, and not surprisingly mu-
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tations of residues that line this hydrophobic pocket structural alterations on receptor function, are not
generally render the receptor transcriptionally inactive, known. In addition, many antiandrogen-resistant pros-
Similarly, changing the conserved leucine residues in tate tumors contain one or more mutations in the
the LxxLL-motif into alanine in the known coactivators AR-LBD, which allows the receptor to manifest an
abrogates their ability to interact and potentiate recep- aberrant ligand-specificity. For instance, mutation of
tor activity. Indeed, the LBD (containing the AF-2) of the codon 877 from threonine to alanine permits this
most receptors when tethered to DNA is able to induce mutant AR to activate gene transcription in the pres-
reporter gene transcription in an agonist-dependent ence of hydroxyflutamide, an antagonist of the wild-
manner, for it in itself is capable of recruiting the type receptor (32, 33). The crystal structure of this
LxxLL-containing coactivators. With that being said, mutant AR-LBD revealed that the replacement of thre-
some of these coactivators have been shown to inter- onine 877 with alanine enlarges the ligand binding
act with multiple sites on the receptor. SRC-1 (steroid pocket enabling the accommodation of the bulky side
receptor coactivator-1) and GRIP-i, for example, can chains on the C17 of steroids (34). This may explain
interact with both the AF-1 and AF-2 of PR and ER why this mutant receptor can bind to a variety of other
using different regions of the protein (15-17). The hormones that normally do not interact with AR (31,
physiological significance of the alternate contact 34, 35). Clearly, conformational changes within the
points between receptor and coactivators remains to AR-LBD have a significant impact on receptor phar-
be determined. macology. Without a structure of the antagonist-

In contrast to other nuclear receptors, the AR-LBD bound receptor, however, it is still unclear how a com-
when expressed alone manifests minimal transcrip- pound can switch from being an antagonist to an
tional activity. Although the full-length AR has been agonist, as has been observed on the AR/877A
shown to interact also with SRC-1 and GRIP-i, unlike mutant.
their interaction with other nuclear receptors, the In a previous study, we used a series of short pep-
LxxLL-motif in these coactivators appears not to be tides to probe ligand-induced conformational changes
sufficient for these interactions (8, 18, 19). In addition, in ER (36-38). This peptide binding analysis comple-
it has also been reported that the C terminus of the mented ongoing crystallographic studies and revealed
p160s can interact and potentiate the AR AF-1 (20, that different ER ligands allow the presentation of dif-
21). It is believed therefore that AR may have unique ferent protein-protein interaction surfaces on ER and
coactivator binding characteristics. Various AR-inter- facilitate the interaction of the receptor with different
acting proteins have been identified by yeast two- coregulatory proteins. Most importantly, this work also
hybrid screens using different AR fragments as bait, led to the discovery of at least one mechanism to
including ARA70, ARA54, ARA55, ARA24, ARA160, explain how antiestrogen-resistant tumors may de-
FHL-2, ARIP3, ARIP4, etc. (22-28). These proteins velop in breast cancers, where the tumor cells switch
bind to different regions of AR and when over- from recognizing antiestrogens as antagonists to ago-
expressed in cells potentiate AR activity. The physio- nists. In this current study, we present data using a
logical significance and the detailed mechanisms of similar approach to the study of mechanisms underlying
action of these proteins, however, remains to be agonist/antagonist activities of AR-ligands, a first step in
determined. the development of new antiandrogens for the treatment

Protein-protein interactions govern almost all bio- of prostate cancer and other endocrinopathies.
logical processes, including activation and repression
by nuclear receptors. Not surprisingly, analysis of the
ligand-induced structural alterations in the receptor, RESULTS
and how they influence its ability to interact with co-
modulators, has become one of the most important Probing AR Conformation Using LxxLL-
areas in the study of receptor pharmacology. Crystal- Containing Peptides
lographic studies of the ER-LBD suggest that the con-
formational changes which occur upon agonist bind- In a previous study, we used phage display to assess
ing permit the docking of the coactivators through ligand-induced structural changes within the ER and
their LxxLL motifs (12, 29, 30). Upon antagonist bind- identified several peptide probes whose binding to the
ing, on the other hand, receptor conformation is al- receptor is conformation sensitive (36, 38, 39). Some
tered so that the helix-1 2 of the LBD is repositioned to of these peptides contain an LxxLL-motif and recog-
occupy the coactivator-binding pocket, thereby block- nize agonist-activated ER but not that activated by
ing the access of coactivators. These studies provide antagonists. Because these peptides were found to be
a structural basis for the agonist and antagonist activ- capable of interacting with several other nuclear re-
ities of receptor ligands. The crystal structure of the ceptors, we wished to determine if any of them could
agonist-bound AR-LBD is very similar to that of be used to recognize the active conformation of the
the other nuclear receptors (31). Still unpublished is AR. We found only two peptides, Dll and D30, that
the structure of antagonist-bound AR; therefore, the were capable of interacting with AR in the presence of
conformational differences between agonist- and an- the agonist 5a-dihydrotestosterone (DHT). In the cur-
tagonist-activated receptor, and the impact of these rent study, we characterized these peptides further



Chang and McDonnell * AR Conformation and Antiandrogen Pharmacology Mol Endocrinol, April 2002, 16(4):647-660 649

and assessed the interaction of AR with each peptide two peptides (Dli and D30) that could interact with
in the presence of either the agonist DHT, or two agonist-activated AR (Table 1). Interestingly, AR did
different antagonists: hydroxyflutamide (OHF) and bi- not interact with the LxxLL-motifs contained within
calutamide. A mammalian two-hybrid assay was per- SRC-1 and GRIP-1 in this assay, in agreement with
formed to evaluate the interactions between AR and all previous findings by other investigators (8, 18, 19).
of the LxxLL-containing peptides identified previously This indicated to us that the protein-protein interaction
(38, 40). For this assay we expressed each peptide as surfaces presented on AR are unusual and that the re-
a Gal4-DBD fusion and used a modified AR, VP1 6-AR, ceptor may regulate transcription using a distinct set of
in which the acidic VP1 6 activation domain was cloned coactivators. Nevertheless, the Dli and D30 peptides
onto the extreme amino terminus of AR. Interactions specifically interacted with agonist- but not antagonist-
between AR and the peptides were detected by mea- activated AR, suggesting that these two peptides do
suring the expression of a luciferase reporter gene indeed detect an active conformation of this receptor.
containing five copies of the Gal4-response element. Although the Dli and D30 peptides both contain an
The results of a representative analysis are shown in "SSRLxxLLM" motif, we do not know as yet which amino
Fig. 1. While these ERa- and/or ERp-interacting pep- acids are required for AR-binding. Such an analysis has
tides were shown to interact with multiple other nu- been confounded by the recent identification of another
clear receptors (38, 40), we were able to identify only LxxLL peptide in our laboratory (LX23), which interacted

.... l4peptide '

5xGal4-Luc3 Dll VESGSSRLMQL LMANDL LT
D30 HPTHSSRLWELLMEATPT M

VP16-ARwt

30000 NH

cc 25000 I U DHT_J
0 20000 [ OH-F

[] bicalutamide
'0 15000

E100o00
E6 5000

Z 0

pM D1l D30 C33 D47 F6 D22 EBIP92SRC1 GRIP1
-NR -NR

VP16-ARIT877A

~30000
O3 NH- 25000 U DH[] DHT

20000 [ OH-F

15000 [ bicalutamide

65000] f
S 0~

pM Dll D30 C33 D47 F6 D22 EBIP92 SRC1 GRIP1
-NR -NR

Fig. 1. The T877A Mutation Permits Antiandrogen-Bound AR to Adopt a Conformation Similar to that of the Wild-Type Receptor
Different LxxLL-motif containing peptides were fused to the Gal4-DBD, and the full-length ARs (wild-type and the T877A

mutant) were modified to include a VP16-activation domain at their amino termini. Interactions between peptides and AR were
determined by measuring the expression of a reporter gene containing five copies of the Gal4-response elements. CV-1 cells were
transfected with different peptide-Ga4DBD constructs together with either the VP16-ARwt or the VP16-AR/T877A expression
plasmid, and reporter constructs 5xGal4Luc3 and pCMV-/3gal. After transfection, cells were treated with either vehicle control
(NH), 100 nM DHT, 100 nM OHF, or 1 jiM bicalutamide for 16 h. Luciferase activity was measured and normalized to the activity
of the coexpressed -galactosidase.
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Table 1. The AR Interacts with Only a Small Subset of LxxLL-Containing Peptidles

Peptide Sequence AR Interaction

D11 VESGSSRLMQLLMANDLLT +

D30 HPTHSSRLWELLMEATPTM +

ER4 SSNHQSSRLIELLSR

014 QEAHGPLLWNLLSRSDTDW

D47 HVYQHPLLLSLLSSEHESG

033 HVEMHPLLMGLLMESQWGA

F6 GHEPLTLLERLLMDDKQAV

D22 LPYEGSLLLKLLRAPVEEV

D48 SQWENSILYSLLSDRVSLD

043 AHGESSLLAWLLSGEYSSA

040 SGWNES ILYRLLQADAFDV

015 PSGGSSVLEYLLTHDTSIL

F4 PVGEPGLLWRLLSAP\TERE

RIP1 40/935-944 VLKQLLLSEN
C5 TVWERASLADLLEWQEEVR

293 SSIKDFPNLISLLSR

EBIP37 TGGGVSLLLHLLNTEQGES

EBIP41 RRDDFPLLISLLCDGALSQ

EBIP44 YGLKMSLLESLLREDISTV

EBIP45 MSYDMLSLYPLLTNSLLEV

EBI P51 FPAEFPLLTYLLERQGMDE

EBIP96 VESEFPYLLSLLGEVSPQP

EBIP49 VSSEGRLLIDLLVDGQQSE

EBIP53 DTPQSPLLWGLLSSDRVEG

EBIP60 GGTQDGYLWSLLTGMPEVS

EBIP66 SLPEEGFLMS(LLTLEGDAE

EBIP70 VMGNNPILVSLLEEPSEEP

EBIP76 VLVEHPILGGLLSTRVDSS

EBIP87 QTPLLEQLLTEHIQQG

EBIP92 SVWPGPELLKLLSGTSVAE

EBIP56 GSWQDSLLLQLLNRTELMA

GRIP-i NR1' DSKGQTKLLQLLTTKSDQM

GRIP-i NR2' LKEKHKILHQLLQDSSSPV
GRIP-i NR3' KKKENALLRYLLDKDDTKD
SRC-1 NR1' YSQTSHKLVKLLTTTAEQQ

SRC-1 NR2' LTARHKILHRLLQEGSPSD

SRC-1 NR3' ESKDHQLLRYLLDKDEKDL

FxxLFb SKTYRGAFQNLFQSVREVIQNP +

'The NR boxes from SRC-1 and GRIP-i were not tested individually but as GaI4DBD fusion proteins containing all three NR
boxes. The GRIP-i construct contains amino acids 629-760 from GRIP-i and the SRC-1 construct includes amino acids 621-765
from SRC-1.
b Amino acids 16-34 from the AR.

with AR but, outside of the LxxLL motif, does not resem- tamoxifen as an ER-antagonist to an agonist (41, 42).
ble D1l1 or 030 (Kimbrel, E., and D. P. McDonnell, per- In a previous study, we discovered that although the
sonal communication). conformation of ER induced by binding to tamnoxifen

Several AR mutations have been identified in meta- prevents its interaction with p160 coactivators, it en-
static prostate cancer which, in addition to being ac- ables the presentation of surfaces on the receptor that
tivated by androgens, can also be activated by non- may be used to recruit other novel coactivators (36,
androgenic compounds. For example, the AR/T877A 39). We therefore proposed two scenarios that might
mutant that contains an alanine at codon 877 instead explain the agonist/antagonist switch observed in
of a threonine in the wild-type receptor, allows the prostate cancers that contains the T877A mutation.
antagonist OHE to function as an agonist (32, 33). This One possibility is that, analogous to the mechanism by
agonist/antagonist activity switch is considered to be which tamoxifen resistance arises in breast cancer,
one of the mechanisms by which some prostate tu- the T877A mutation may allow the OHF-bound AR to
mors escape the inhibitory activity of antiandrogens. present a unique surface that permits its interaction
Similarly, resistance has been observed after treat- with a coactivator with which it would not normally
ment with the antiestrogen tamnoxifen in breast cancer couple. The second possibility is that, in the back-
patients, where cancer cells switch from recognizing ground of the T877A mutation, OHF-bound AR adopts
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a conformation similar to that of the agonist-activated Dl and D30 Peptides Interact with the AR-LBD
wild-type receptor. To distinguish between these two
possibilities, we extended our use of peptide probes to Previously, we found that all the LxxLL peptides used

an analysis of the conformation of the AR/T877A mu- in this study, including Dli and D30, bind to the co-

tant in the presence of both DHT and OHF. Surpris- activator docking surface within the ER-LBD (38).

ingly, we found that OH F-activated AR/T877A inter- There is, however, evidence suggesting that the LxxLL

acted with the same peptides as agonist-bound AR motifs present in coactivators SRC-1 and GRIP-1 are

(Fig. 1 B). This result indicated to us that the agonist/ not important for the docking of these coactivators

antagonist switch in AR/T877A could be explained by with AR (18, 43). In addition, our two-hybrid assay also

the fact that, in the background of this mutation, the showed that most LxxLL motifs, including those from

OHF-occupied mutant AR adopts a conformation sim- GRIP-1 and SRC-1, do not interact with AR. We there-
ilar to that of agonist-activated wild-type receptor. fore wished to determine if the Dli and D30 peptides
Impartotatof neistactivae wild-type recth e p T87function like other coactivator peptides and bind to the
Importantly, neither the wild-type nor the T877A mu- region within AR analogous to the coactivator binding
tant is recruited to the Dli and D30 peptides in the pocket in other receptors. Using different fragments of

presence of bicalutamide, a compound that has been AR in a m mainto r i as sa eet erm n ed
show prvioslyto uncion s apur anagoistfor AR in a mammalian two-hybrid assay, we determined

shown previously to function as a pure antagonist for that the DBD/LBD (AR507-919) fragment alone was
both ARs. These results indicate that the Dli and 030 sufficient for D30 (and Dli, data not shown) binding
peptides serve as sensitive probes that detect a re- (Fig. 2, B and C). In addition, truncation of the amino
ceptor conformation that is compatible with transcrip- terminus did not influence peptide binding specificity
tional activation. because peptides that failed to bind the full-length AR

(A) (B) VP16-ARwt
'18000 N H

AF-1 DBDH LBD 16000 IDH'I
/ F 4f7R 10 10 14000

ARwt E12000

AR507-919 U10000

6 000.
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__________ :.] 4000
/. ARI-660 o 2000

Z 0 " -- 1".....
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Fig. 2. The D30 Peptide Interacts with the LBD of AR
A schematic diagram of the different AR fragments used is shown in A. CV-1 cells were transfected with different Gal4DBD-

peptide fusion constructs and either the VP16-ARwt (B), or the VP16-AR507-919 (C), expression plasmids, together with the

5xGal4Luc3 and pCMV-Pgal reporters. After transfection, cells were treated with vehicle control or 100 nM DHT for 16 h and the
luciferase and -galactosidase activities were determined. D, Different fragments of AR were in vitro translated and labeled with
35S-methionine. Bacterially expressed GST, GST-D30, and GST-C33 proteins were purified using glutathione-Sepharose beads,
and equal amounts of these proteins were incubated with different in vitro translated AR fragments in the presence or absence
of 1 gM DHT. Nonspecific binding was reduced by four washes with PBST. Proteins remaining bound to the beads were resolved
by SDS-PAGE and detected by autoradiography. 1/10, One tenth of the total input protein.
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were also unable to bind to the AR DBD-LBD. No interacts is not easily accessible when the receptor is
interaction with the amino terminus (AR 1-660) was DNA bound. Secondly, the D30 binding site on AR
detectable in this assay (data not shown). Similar re- does not coincide with a coactivator binding surface;
suits were obtained in a GST-pull-down assay. Using therefore, coactivator binding is not affected. Thirdly, it
the D30 peptide fused to the GST protein, we con- is possible that the D30 peptide may not have high
firmed that all three constructs, the full length-AR, enough affinity to compete with coactivators for bind-
AR-DBD/LBD, and AR-LBD alone (AR624-919), but ing to AR.
not the amino terminus of the receptor (AR1-660), To investigate these possibilities, we first tested
interacted with the D30 peptide (Fig. 2D). Based on whether the conformation of the DNA-bound AR can
these data, we believe that the D30 peptide binds still be recognized by the D30 peptide. A modified
within the LBD of AR. mammalian two-hybrid assay was used in which the

expressed AR was allowed to interact with a reporter
The D30 Binding Surface Does Not Overlap with gene containing an AR response element and the D30
the AR: Coactivator Interaction Surface peptide was made so as to contain a VP1 6 fusion at its

amino terminus. Recruitment of the VP16-D30 fusion
Because the binding site of the LxxLL peptides over- protein to AR would result in an increase of transcrip-
laps the coactivator docking surface on most of the tion from the reporter gene. We confirmed with this
nuclear receptors, it is not surprising that these pep- assay that the D30 peptide is capable of interacting
tides, when overexpressed in cells, competitively with the DNA-bound AR (data not shown). This result
block coactivator recruitment and inhibit receptor suggests to us that either the D30 binding site on AR
transcriptional activity (38, 40). Because the D30 pep- does not coincide with a coactivator-binding surface,
tide interacts with AR in an agonist-dependent man- therefore, coactivator binding is not affected, or that
ner, we wished to determine if this peptide also binds the D30 peptide may not have high enough affinity to
at a site that coincides with or overlaps the coactiva- compete with coactivators for binding to AR.
tor-binding surface on AR. In transfected CV-1 cells,
therefore, we overexpressed a two-copy peptide con- The D30 Peptide and the Amino Terminus of AR
struct, pM-2xD30, to see if it could disrupt AR tran- Bind at Overlapping Surfaces on AR-LBD
scriptional activity. A two-copy peptide was used be-
cause we had previously determined that it is more The findings of several studies from other investigators
efficient than a single-copy peptide in disrupting ER indicate that the amino and carboxyl termini of AR can
transcriptional activity (38). Because the D30 peptide interact (7, 18, 44). He et aL (45) have also shown
also interacts with ER, we were not surprised to see recently that an LxxLL-like motif, FxxLF, located at the
that 2xD30 efficiently inhibited ER transcriptional ac- amino terminus of AR mediates this interaction. Con-
tivity when overexpressed in these cells. We were sequently, we considered that the Dll and D30 pep-
surprised, however, to find that the 2xD30 only mar- tides might be binding to the same surface as this
ginally inhibited AR activity when assayed on the FxxLF motif and therefore used a reconstituted AR
MMTV-Luc reporter gene (Fig. 3). Overexpression of transcription assay to address this possibility. In CV-1
this peptide had very little, if any, effect on AR activity cells, the AR DBD-LBD (AR507-919) alone displayed
when different reporter constructs were used. Similar minimal transcriptional activity even when DHT was
results were obtained using other cell lines (data not added to the medium, confirming that the DBD-LBD
shown). We considered three possible explanations itself does not recruit coactivators efficiently (Fig. 4A).
for these results. First, the surface on AR where D30 Because the amino terminus of AR is able to interact

MMTV-Luc (AR) C3-Luc (ERa) 0 NH
0140 NH

c 400 c 120
0 ooo

2300. 280

& 200 N 60
1 O 40
100,02

z 0',- z 0

pM pM-2xD30 pM-2xF6 pM pM-2xD30 pM-2xF6

Fig. 3. The D30 Binding Surface on AR Does Not Overlap with that Required for Coactivator Binding
CV-1 cells were transfected with (A) MMTV-Luc, pCMVPgal, and RS-AR or (B) C3-Luc, pCMVf3gal, and RST7-ERa in the

presence of either pM, pM-2xD30 or pM-2xF6 as indicated. After transfection, cells were treated with either vehicle control or (A)
100 nM DHT or (B) 100 nM E2 for 16 h. Luciferase activity was measured and normalized to the activity of the coexpressed
/3-galactosidase.
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Fig. 4. The D1I and D30 Peptides Bind at a Site in the AR-LBD that Overlaps or Coincides with the Site Where the NH2 Terminus
Binds

A, The AR-DBD/LBD alone has minimal transcriptional activity; coexpression of the ARl-501 (N terminus) restores ligand-
dependent reporter gene activation. CV-1 cells were transfected with MMTV-Luc, pCMV-Pgal, and the AR-DBD/LBD expression
plasmid pcDNA/AR507-919wt, together with a control vector or a vector expressing AR1-501. After transfection, cells were
treated with vehicle control or 100 nM DHT for 16 h and then assayed for luciferase and -galactosidase activities. B, The D30
and Dl peptides efficiently blocked the interaction between the amino terminus of AR and the AR-LBD. CV-1 cells were
transfected with pcDNA/AR507-919wt, pcDNA/AR1-501, MMTV-Luc, and pCMV-/3gal, together with plasmids expressing
different Gal4DBD-peptide fusions. Cells were induced and assayed as in A.

with the AR-LBD and is capable of recruiting coacti- has the same effect of retaining the ligand in the Ii-
vators on its own, coexpression with the DBD-LBD gand-binding pocket. This was accomplished by mea-
fragment ARl-501 restores DHT-induced reporter suring the dissociation rate of a nonmetabolizable
gene activity (Fig. 4A). To test if the Dii and D30 ligand, R1881, from AR (Fig. 5). The dissociation half-
peptides bind to the same surface on AR-LBD as the time (T1/2) of R1 881 from full-length AR was approx-
AR amino terminus, we overexpressed these peptides imately 124 min in our assay, and the T1/2 was short-
in the reconstituted system, and found that Dli and ened to about 21 min when the AR507-919 was
D30, but not other LxxLL-containing peptides, could analyzed in a similar manner. Coexpression of the
interrupt the AR N/C termini interaction (Fig. 4B). We amino terminus of AR (AR1-501) prolonged the T1/2 to
conclude, therefore, that the Dll and D30 peptides about 47 min and coexpression of the 2xD30 had a
are binding to either the same or overlapping surfaces similar effect. This result further confirms our theory
on LBD where the amino terminus of the receptor that the D30 peptide is binding to the same surface on
binds. AR-LBD, where the amino terminus of AR also binds.

It has been shown in the past that the interaction of In addition, it suggests that the D30 may serve the
the amino terminus of AR with the LBD could stabilize same purpose as the amino terminus of the receptor,
ligand binding to the receptor (46). Because the D30 that of stabilizing the ligand in its binding pocket. This
peptide appears to be binding at the same or overlap- result may also explain why overexpression of the D30
ping site where the amino terminus of the receptor peptide did not inhibit AR transcriptional activity be-
also binds, we wished to determine if the D30 peptide cause it functions similarly to the AR N terminus in



654 Mol Endocrinol, April 2002, 16(4):647-660 Chang and McDonnell - AR Conformation and Antiandrogen Pharmacology

2.5T 1/2 (m)

0.0, AR-wt 124.0

AR507-919 + AR1-501 46.8
25 AR507-919 + pM 21.4

0
_- AR507-919 + pM-2xD30 50.0

-7 '5-

0 1;0 2;0 300

Time (min)

Fig. 5. The D30 Peptide Functions Similarly to the Amino Terminus of AR in Stabilizing Ligand Binding in the AR-LBD
CV-1 cells were transfected with expression plasmids for either 1) wild-type AR alone; 2) AR507-919 plus AR1-501; 3)

AR507-919 plus Gal4DBD (pM); or 4) AR507-919 plus Gal4DBD-2xD30 (pM-2xD30). Twenty-four hours after transfection, cells
were labeled with 5 nM of 3H-R1 881 for 2 h and then a 10,000-fold excess of cold R1 881 was added at different time points. Cells
were washed four times with PBS to remove nonspecific binding and then lysed for scintillation counting and protein concen-
tration measurement.

stabilizing ligand binding. Although we cannot totally Receptor activation, the process of converting AR
rule out the possibility that the D30 peptide may not from an inactive to a transcriptionally active form, re-
have high enough affinity to compete with coactivators quires nuclear translocation, receptor dimerization,
for binding to AR, our data is most consistent with the DNA binding and recruitment of cofactor proteins. To
hypothesis that the D30/AR interaction resembled assess which step requires the formation of a D30
more of the AR N/C termini interaction than of cofac- binding pocket, we first tested whether DNA binding
tor:AR interaction. can be achieved without the formation of this pocket.

We fused both wild-type and T877A AR to VP16 to
Formation of a D30 Docking Site on AR Is determine if the ability of compounds to deliver AR to
Required for Agonist Activity DNA correlates with their ability to induce a D30 bind-

ing pocket on AR. This analysis revealed that the wild-Although the 030 binding surface within AR is not a tyeAacvtdbyHEwsntelerdoDN

coactivator docking site, we were intrigued by the fact eicietig. 6) In the nof the to7A
thattheD30 eptde apeaed o reognze te tan- efficiently (Fig. 6C). In the presence of the T877A mu-

that the D30 peptide appeared to recognize te tran- tation, however, OHF-bound receptor was brought to
scriptionaly competent AR conformation. We won- the DNA as efficiently as that activated by DHT. inter-

dered if formation of a D30 binding pocket on AR is estingly, while RU486 could efficiently deliver both

required for it to manifest agonist activity and whether AR-wt and AR/T877A to DNA, the RU486-bound AR

the D30:AR interaction indeed predicts AR transcrip- wan rtd to DNA tie efficien Ti

tional activity. To probe this hypothesis, we compared was not recruited to the D30 peptide efficiently. This

several agonists and antagonists of AR for their ability result suggests that the D30 binding pocket is not

to induce reporter gene activation as well as the inter- required for AR to translocate, dimerize, and bind to

action of AR with D30. The result of this assay is DNA, but rather is required for events downstream of

shown in Fig. 6. With MMTV-Luc as a reporter, only DNA binding. We have also tested a number of other

DHT was a full agonist for both wild-type AR and the AR agonists and antagonists (47), and the results con-

AR/T877A mutant. OHF and RU486 had very little firm that the ability of a compound to induce a D30
activity when wild-type AR was cotransfected; in con- binding surface on AR correlates very well with tran-
trast, OHF efficiently induced MMTV-Luc expression scriptional activation.

in the presence of the T877A mutation (Fig. 6A). The Because we have been able to show that the D30
ability of these compounds to activate reporter gene peptide and the amino terminus of AR compete for
expression was compared in parallel with their ability binding to the same site on the AR-LBD, we tested
to facilitate the D30:AR interaction (Fig. 6B). The full whether the AR N-/C-interaction also tracks with tran-
agonist DHT induced more than a 500-fold interaction scriptional activation. We found that the AR amino
between AR and the D30 peptide. RU486, although terminus (AR1-501) could be recruited to the AR-DBD/
not as efficient as DHT, induced a 15- to 20-fold in- LBD fragment (AR507-919) only when the LBD is in an
teraction between D30 and wild-type AR as well as the active conformation, the same conformation that per-
T877A AR, which parallels the weak agonist activity of mits the D30 peptide to bind (Fig. 6D). Similar results
this compound on both ARs. On the other hand, OHF, were also obtained using Gal4DBD-fusions containing
a potent activator of the T877A mutant but not the the first FxxLF motif in the AR NH2-terminal domain
wild-type AR, also induced a robust interaction be- (23 FQNLF27) (data not shown). This result suggests
tween D30 and VP16-ART877A, but not the wild-type that although the AR-LBD is not directly involved in
VP1 6-AR. recruiting coactivators, it contributes to shaping a con-
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Fig. 6. The Formation of a D30-Binding Pocket on AR Is Required for Its Transcriptional Activity
A reporter gene assay was used to analyze the agonist or antagonist activity of AR ligands. CV-1 cells were transfected with

either wild-type or T877A mutant AR expression plasmids, RS-ARwt and RS-ARiT877A, respectively; MMTV-Luc and pCMV-Pgal
were used as reporter constructs in this assay. B, The mammalian two-hybrid assay was performed to determine the ability of
ligand-AR complexes to recruit the D30 peptide. CV-1 cells were transfected with 5xGal4Luc3, pCMV-Pgal and pM-30, together
with either VP16-ARwt or VP16-ARIT877A. C, The ARwt and AR/T877A were expressed as fusion proteins to the VP1 6-acidic
activation domain to bypass the need for AR-specific coactivators required for gene transcription, allowing the assessment of the
ability of ligands to deliver receptors to DNA. CV-1 cells were transfected with pVP16-ARwt or pVP16-AR/T877A together with
MMTV-Luc and pCMV-Pgal. D, The ability of ligand-ARLBD complexes to recruit the amino terminus of AR was analyzed. CV-1
cells were transfected with MMTV-Luc, pCMV-/3gal and pcDNA-AR1-501, together with either pcDNA-AR507-919wt or pcDNA-
AR507-919/T877A. After transfection, cells were treated with either vehicle alone (NH), 100 nm DHT, 100 nM OHF, or 100 nM
RU486 as indicated for 16 h before the luciferase and P-galactosidase activities were determined.

formation that is required for AR transcriptional activ- tions found in the latter two regions. The L701 H mu-
ity. Interestingly, the N/C interaction did not predict the tant has a reduced sensitivity to the natural ligand
partial agonist activity of RU486 because no N/C in- DHT; however, it can be activated by physiological
teraction was observed in the presence of RU486 (Fig. concentrations of cortisol (50). As shown in Fig. 7, A
6D). This result indicates that the D30/AR interaction and B, the D30 peptide indeed interacted less effi-
may be a more sensitive and/or accurate predictor of ciently with the DHT-activated L701 H receptor but
AR transcriptional activation, gains the ability to interact with this AR variant in the

Several missense mutations have been identified in presence of 10 nM cortisol. Another mutation in the
prostate cancers that appear to increase the agonist signature sequence region, V715M, was shown to
efficacy of some androgenic and nonandrogenic Ii- have an increased response to progesterone, an-
gands. Therefore, we next evaluated whether muta- drosterone, and a number of other endogenous hor-
tions in the LBD, outside the AF-2 domain, would mones (51, 52). In our analysis, we found that the
behave like the T877A mutant and permit the receptor AR-V715M also recruited the D30 peptide more effi-
to adopt an active conformation in the presence of a ciently in the presence of these ligands (Fig. 7, C and
wide variety of ligands. The majority of AR mutations D). In addition to the T877A mutation, another AR
found in prostate cancers are located between codons variant, H874Y, also contained within the region flank-
670-678, 701-730 (signature sequence), and 874-910 ing AF2 (codons 874-910), was found to recognize E2
(48). Based on homology modeling, the residues 668- and hydroxyflutamide as AR agonists (53, 54). In our
671 do not contribute directly to ligand binding and are analysis, we found that the same D30-binding pocket
positioned away from the ligand binding pocket (49), was also formed on the surface of this mutant AR in
which suggests that mutations in this region are less the presence of these ligands. A full dose-response
likely to influence the binding of the D30 peptide. We curve of various ligands used in these analyses
therefore decided to focus our analysis on AR muta- (10-12-10 - M) was also performed to ensure that the
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Fig. 7. The D30-Peptide Predicts the Transcriptionally Active Conformation of Various Mutant ARs
A, C, and E, CV-1 cells were transfected with either wild-type or mutant AR expression plasmids, MMTV-Luc and pCMV-Pgal.

B, D, and F, CV-1 cells were transfected with 5xGal4Luc3, pCMV-Pgal and pM-30, together with either VP1 6-ARwt or VP1 6-AR
mutants. After transfection, cells were treated with either 0.1 nM DHT, 100 nM OHF, 1 nM progesterone (P), 1 nM 17/p-estradiol (E2),
10 nM cortisol, or 100 nM androsterone as indicated for 16 h before the luciferase and p-galactosidase activities were determined.

observed phenotype of the cloned mutants reflected two peptides, Dl and D30, which detect a confor-
that which has been published previously (data not mation of AR that is compatible with transcriptional
shown). We concluded, therefore, that regardless of activation. Upon binding an agonist, the LBD of most
the class of mutations, that gain of function phenotype nuclear receptors adopts an active conformation
of AR-LBD variants tracks with the acquisition of the which allows the presentation of a coactivator binding
ability of AR to adopt an active AF-2 conformation. pocket, permitting the docking of coactivator proteins

via a helical LxxLL motif (12-14). We have demon-
strated in this report that in the presence of an acti-

DISCUSSION vating ligand, the AR-LBD undergoes a similar confor-
mational change, allowing the docking of an LxxLL

In this study, we analyzed the ligand-induced struc- motif contained within the Dl and D30 peptides.
tural changes in AR using peptide probes, and found While we and others have shown previously that dif-
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ferent receptors have distinct LxxLL motif preferences stage tumors (59-61). All current hormonal manipula-
(38, 55), it is noteworthy that AR appears to be one of tions focus on controlling the access of androgens to
the most selective, for it interacts with only a very their cellular receptor, either through elimination of
limited subset of LxxLL sequences. Furthermore, al- androgens in the circulation or by using an antagonist
though the docking site for these LxxLL peptides in to compete for their binding to AR. In view of the high
other nuclear receptors is used to recruit coactivators, frequency of AR mutations identified in advanced can-
the analogous region in AR appears to have a different cers, we think that these manipulations will all fail
function. Our data agree with previous findings by ultimately. A more promising approach would be to
other investigators that the AR-LBD utilizes this sur- develop drugs that target different sites on AR. Based
face to couple with its own amino terminus (44, 45). on our theory that the AR amino and carboxyl termini
This interaction slows down the dissociation of ligand interaction is required for its transcriptional activity, we
from the LBD, maintains the receptor in an active believe that a peptide or a small molecule that can
conformation, and thus may allow a more efficient target the disruption of this interaction would be useful
recruitment of coactivators and the subsequent target as a therapy for the treatment of antiandrogen refrac-
gene transcription, tory prostate tumors. In addition, if the consequence

Langley et al. (44) have shown previously that the of all AR mutations is to allow the presentation of the
OHF binding induced conformational changes within same active conformation, it would suggest that both
the T877A mutant but not the wild-type AR-LBD, the mutant and wild-type AR may use the same sur-
which permitted its interaction with the NH2 terminus face to recruit coactivators. Consequently, targeting
of the receptor and that correlated with the activation the interaction between AR and the coactivator(s) re-
of this mutant receptor by OHF (44). He et al. (45) have quired for its transcriptional activity has the potential of
also identified an LxxLL-like motif, FxxLF, located being an effective therapy for the treatment of meta-
within the amino terminus of AR that appears to be static prostate cancers.
responsible for docking the amino terminus of AR to
the LBD. Consistent with these data, our results using
combinatorial peptide approach have reached the
same conclusion and reinforced the hypothesis that MATERIALS AND METHODS

the interaction between the amino and carboxyl
termini of AR may be required for its transcriptional Reagents and Plasmids
activity. Our peptide probes appear to have higher
sensitivity when compared with the other assays since The RS-AR and VP16-AR were gifts from K. Marschke (Li-

gand Pharmaceuticals, Inc., San Diego, CA) and the plasmids
the partial agonist activity of RU486 is only detected expressing the AR mutants were generated using the Quick-
by the D30 peptide but not the N-/C-interaction as- Change site directed mutagenesis kit (Stratagene, La Jolla,
says (Fig. 6D). In addition to the ligands examined in CA). The 5xGal4Luc3, MMTV-Luc, and pM-peptide plasmids
this study, we have also tested a large number of other were described previously (38, 62). VP16-AR507-919, VP16-

AR624-919, VP16-AR1-660, pcDNA-ARwt, pcDNA-AR507-
compounds (Ref. 47 and data not shown). All of the 919, pcDNA-AR624-919, pcDNA-AR1-660, pcDNA-AR1-
results obtained confirm that AR transcriptional activ- 501 and pM-AR624-919 were generated using PCR
ity can be accurately predicted by assaying either the amplified AR fragments, and were subcloned into pVP16,
AR N/C termini interaction or the recruitment of pcDNA3 and pM vectors (CLONTECH Laboratories, Inc.,
VP16-AR to the D30 peptide and that the peptide Palo Alto, CA, and Invitrogen, Carlsbad, CA). The pVP16-

2xD30 and pM-2xD30 plasmids were made in a similar fash-
approach is always the more sensitive of the two ion as described before (38), in which two copies of the D30
assays. peptide were fused to the VP1 6 acidic activation domain and

Several factors that appear to contribute to the de- Gal4-DBD, respectively. The GST-D30 plasmid was made by
velopment of antiestrogen resistance in breast can- subcloning the D30 peptide into the pGex-6pl vector (Am-

amplification of ersham Pharmacia Biotech, Piscataway, NJ). All the cell cul-
ture media and supplements were purchased from Life Tech-

coactivators, down-regulation of corepressors, and nologies, Inc. (Grand Island, NY). CV-1 cells were obtained
ectopic interactions of ER with cofactor proteins (39, from ATCC (Manassas, VA). R1 881 and 3H-R1 881 were ob-
56-58). We found that the T877A mutation allows AR tained from NEN Life Science Products (Boston, MA). DHT
to adopt an active conformation regardless of whether was purchased from Sigma (St. Louis, MO). Hydroxyflut-

amide and bicalutamide were gifts from K. Gaido (CIIT, Re-
it is bound by an agonist or antagonist. Because this search Triangle Park, NC) and Nobex, Inc. (Research Triangle
same active conformation is found in the agonist- Park, NC).
bound wild-type AR, it suggests that the consequence
of this amino acid change may be to allow mutant AR Cell Culture and Transfection
to appear as a wild-type receptor in target cells. Sim-
ilarly, the L701 H, V715M, and H874Y AR mutants also Monkey kidney CV-1 cells were grown in minimum essential
appeared to function in the same manner by allowing medium plus 8% fetal bovine serum, essential amino acids
these AR variants to function like wild-type AR in the and sodium pyruvate. Lipofectin-mediated transfection was

performed essentially as described (38). Hormones were
presence of nonclassical AR ligands. It has been ob- added after cells recovered from transfection and then all
served that AR mutations occur at a higher frequency were incubated for 16 h before assaying. Luciferase and
in advanced prostate cancers compared with early A-galactosidase activities were determined as described (38).
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